cf 663E Binary Table

题目描述

n n n m m m 列的 01 01 01 网格,可以选择翻转某些行或某些列,求最终 1 1 1 最少的数量。

数据范围

n ≤ 20 , m ≤ 1 0 5 n \le 20,m \le 10^5 n20,m105

题解

假设状态 x x x 是行的翻转状态,那每一列的状态 y y y 会变成 z = x ∧ y z=x \wedge y z=xy ,再根据 0 , 1 0,1 0,1 数量的大小比较决定这一列是否翻转

变个式子, x = y ∧ z x=y \wedge z x=yz

于是我们可以设 Y i Y_i Yi 为状态为 i i i 的列数, Z i Z_i Zi i i i m i n ( 0 , 1 ) min(0,1) min(0,1) 的个数,利用 f w t fwt fwt 进行卷积,可以得到最小的 ( Y ∧ Z ) [ x ] (Y \wedge Z)[x] (YZ)[x] ,这个值就是答案

效率: O ( n 2 n ) O(n2^n) O(n2n)

代码
#include <bits/stdc++.h>
typedef long long LL;
using namespace std;
const int N=1<<20;
int n,m,a[N],t,b[N],p=1e9;
LL A[N],B[N]; char s[N];
void Fwt(LL *g,int o){
	for (int i=1;i<t;i<<=1)
		for (int j=0;j<t;j+=(i<<1))
			for (int k=0;k<i;k++){
				LL x=g[j+k],y=g[i+j+k];
				g[j+k]=x+y;g[i+j+k]=x-y;
				if (!o) g[j+k]>>=1,g[i+j+k]>>=1;
			}
}
int main(){
	cin>>n>>m;t=1<<n;
	for (int i=0;i<n;i++){
		scanf("%s",s);
		for (int j=0;j<m;j++)
			a[j]=(a[j]<<1)|(s[j]^48);
	}
	for (int i=0;i<m;i++) A[a[i]]++;
	for (int i=0;i<t;i++)
		b[i]=b[i>>1]+(i&1),
		B[i]=min(b[i],n-b[i]);
	Fwt(A,1);Fwt(B,1);
	for (int i=0;i<t;i++)
		A[i]=A[i]*B[i];
	Fwt(A,0);
	for (int i=0;i<t;i++)
		p=min(p,(int)A[i]);
	cout<<p<<endl;return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值