题目描述
有 n n n 行 m m m 列的 01 01 01 网格,可以选择翻转某些行或某些列,求最终 1 1 1 最少的数量。
数据范围
n ≤ 20 , m ≤ 1 0 5 n \le 20,m \le 10^5 n≤20,m≤105
题解
假设状态 x x x 是行的翻转状态,那每一列的状态 y y y 会变成 z = x ∧ y z=x \wedge y z=x∧y ,再根据 0 , 1 0,1 0,1 数量的大小比较决定这一列是否翻转
变个式子, x = y ∧ z x=y \wedge z x=y∧z
于是我们可以设 Y i Y_i Yi 为状态为 i i i 的列数, Z i Z_i Zi 为 i i i 中 m i n ( 0 , 1 ) min(0,1) min(0,1) 的个数,利用 f w t fwt fwt 进行卷积,可以得到最小的 ( Y ∧ Z ) [ x ] (Y \wedge Z)[x] (Y∧Z)[x] ,这个值就是答案
效率: O ( n 2 n ) O(n2^n) O(n2n)
代码
#include <bits/stdc++.h>
typedef long long LL;
using namespace std;
const int N=1<<20;
int n,m,a[N],t,b[N],p=1e9;
LL A[N],B[N]; char s[N];
void Fwt(LL *g,int o){
for (int i=1;i<t;i<<=1)
for (int j=0;j<t;j+=(i<<1))
for (int k=0;k<i;k++){
LL x=g[j+k],y=g[i+j+k];
g[j+k]=x+y;g[i+j+k]=x-y;
if (!o) g[j+k]>>=1,g[i+j+k]>>=1;
}
}
int main(){
cin>>n>>m;t=1<<n;
for (int i=0;i<n;i++){
scanf("%s",s);
for (int j=0;j<m;j++)
a[j]=(a[j]<<1)|(s[j]^48);
}
for (int i=0;i<m;i++) A[a[i]]++;
for (int i=0;i<t;i++)
b[i]=b[i>>1]+(i&1),
B[i]=min(b[i],n-b[i]);
Fwt(A,1);Fwt(B,1);
for (int i=0;i<t;i++)
A[i]=A[i]*B[i];
Fwt(A,0);
for (int i=0;i<t;i++)
p=min(p,(int)A[i]);
cout<<p<<endl;return 0;
}