深入浅出剖析LLM应用开发平台Coze/扣子平台

Hi~ o( ̄▽ ̄)ブ 我的朋友们,渴望知识的触手已经延伸到Agent和工作流编排了,除了本身工作之外,对最近大半年大火的Agent和Workflow也是每天都在关注,上个月在国内Coze平台简单搭建了1个Bots, AI产品经理大本营初衷是提前入局占个坑,建立一个AI产品的自助机器人,包含了一些知识库,可以去体验一下呢。

📌 一文读懂开源的 LLM应用开发平台Dify:https://zhuxiaoxia.blog.csdn.net/article/details/143212786

在这里插入图片描述
这个笔记的内容不会太深,因为整体学习下来发现没有需要特别记录的,核心点就是两个:

  1. 搞清楚Agent逻辑和任务怎么拆解 - 取决于你聪明的脑子,多研究琢磨动手
  2. 搞清楚Coze怎么使用 - 了解工具,使用工具,拿下
### 关于LLM(大型语言模型)的基础概念 LLM(Large Language Model,简称LLM),即大规模语言模型,在2018年左右开始兴起。这类模型是由人工神经网络构成的复杂系统,其参数数量通常达到数十亿甚至更多[^1]。这些模型通过无监督学习的方式对海量未标注数据进行预训练,从而生成一个通用的语言理解与生成框架。随后,可以根据具体应用场景的需求对其进行微调。 #### LLM的核心特点 - **高参数量**:LLM拥有极高的参数规模,这使得它们能够捕捉复杂的模式并处理多样化的自然语言任务。 - **预训练机制**:利用大量的文本数据集完成初步训练过程,形成强大的泛化能力。 - **灵活性强**:经过适当调整后可应用于翻译、摘要生成、问答等多种实际应用领域。 ### 构建LLM的技术细节 对于希望深入了解如何构建LLM的人来说,《深入浅出LLM基础篇》系列文章提供了宝贵的指导资源。特别是其中关于“大模型结构分类”的部分详细探讨了当前主流的大规模语言模型所采用的具体技术方案——尤其是Transformers架构及其内部工作原理[^2]。Transformer是一种革命性的深度学习模型设计方法论,它摒弃了传统循环神经网络(RNNs)中的序列依赖关系假设,转而依靠自注意力(Self-Attention)机制来高效捕获远程上下文关联信息。 以下是有关Transformer的一些重要组成部分: - **编码器-解码器结构**: 整体上分为两个阶段操作—先由编码器负责提取输入序列特征表示;再交予解码器依据前述结果逐步预测目标输出项。 - **多头注意力层(Multi-head Attention Layer)**: 这种特殊的连接形式允许模型在同一时刻关注来自不同位置的信息片段组合而成的新表达方式,极大地增强了表征空间维度以及计算效率上的表现力。 ### 提升LLM性能的实际案例-RAG 除了上述理论层面的知识外,还有其他一些实用技巧可以帮助我们更好地发挥现有LLM的能力。例如Retrieval-Augmented Generation (RAG)[^3], 它结合外部知识库检索功能扩展了单纯依赖固定参数记忆的传统做法局限性。简单来说就是把查询请求映射到最近邻相似度最高的几篇文章里去寻找答案线索,并把这些额外补充进来的内容一同送入后续推理环节当中考虑进去。这种方法特别适合应对那些随着时间推移不断更新变化的事实类问题解答需求场景。 ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/rag-token-nq") def generate_answer(question): inputs = tokenizer([question], return_tensors="pt")["input_ids"] with torch.no_grad(): outputs = model.generate(inputs) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer print(generate_answer("What is the capital of France?")) ``` 以上代码展示了如何使用Facebook开源项目`RAG-Token-NQ`版本来进行简单的QA交互演示实例。 ### 获取进一步的学习材料 如果读者想要获得更加系统的培训路径指引,则可以通过某些在线平台或者社区渠道获取专门定制好的课程体系介绍链接[^4]。这里提到的一份名为“Ai大模型学习路线图”的文档就非常适合初学者快速建立起全局视角下的认知框架。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值