TensorFlow2中使用Keras Tuner搜索网络的超参数

1. 导入所需的库

import tensorflow as tf
import kerastuner as kt
import IPython

for i in [tf, kt]:
    print(i.__name__,": ",i.__version__,sep="")

输出:

tensorflow: 2.2.0
kerastuner: 1.0.1

2. 导入数据集

本案例中使用Fashion MNIST构建神经网络,并用Keras Tuner寻找最优的超参数。

(trainImages, trainLabels),(testImages, testLabels) = tf.keras.datasets.fashion_mnist.load_data()

for i in [trainImages, trainLabels, testImages, testLabels]:
    print(i.shape)

输出:

(60000, 28, 28)
(60000,)
(10000, 28, 28)
(10000,)
# 将像素值归一化到0至1之间的数
trainImages = trainImages.astype("float32")/255.0
testImages = testImages.astype("float32")/255.0

3. 定义模型结构

寻找模型超参数时,需要在模型定义的时候定义超参数搜索空间,这样定义的模型叫超模型。定义超模型有两种方式:

  • 1. 使用模型构建函数(本案例采用这种方法)
  • 2. 通过构建Keras Tuner HyperModel子类完成
def modelBuilder(hp):
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
    
    # 从32至512的范围内搜索第一层神经元个数
    hp_units = hp.Int("units",min_value=32, max_value=512, step=32)
    model.add(tf.keras.layers.Dense(units=hp_units,activation="relu"))
    model.add(tf.keras.layers.Dense(10))
    
    # 从0.01,0.001和0.0001中搜索最佳的学习率
    hp_learning_rate = hp.Choice("learning_rate",values=[1e-2,1e-3,1e-4])
    
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=hp_learning_rate),
                 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                 metrics=["accuracy"])
    return model

4. 实例化模型并寻找超参数

Keras Tuner有四种tuner可用:RandomSearch、Hyperband、BayesianOptimization和Sklearn。本案例中使用Hyperband。

实例化Hyperband,需要指定超模型、优化的目标(函数)、最大迭代次数等。

tuner = kt.Hyperband(modelBuilder,
                    objective="val_accuracy",
                    max_epochs=10,
                    factor=3,
                    directory="my_dir",
                    project_name="intro_to_kt",
                    overwrite = True) # overwrite参数删除之前保存的checkpoint和log,从头开始搜索

class ClearTrainingOutput(tf.keras.callbacks.Callback):
    def on_train_end(*args, **kwargs):
        IPython.display.clear_output(wait = True)

tuner.search(trainImages, trainLabels,epochs=10,validation_data=(testImages,testLabels),callbacks=[ClearTrainingOutput()])

best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")

输出:

Trial complete
Trial summary
|-Trial ID: b151c62677c0d827349bf0d0549e6150
|-Score: 0.8691999912261963
|-Best step: 0
Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 0
|-tuner/epochs: 10
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 192
INFO:tensorflow:Oracle triggered exit

The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is 416 and the optimal learning rate for the optimizer
is 0.001.

5. 用寻找到的参数进行模型训练

model = tuner.hypermodel.build(best_hps)
model.fit(trainImages,trainLabels, epochs=10, validation_data=(testImages, testLabels))

输出:

Epoch 1/10
1875/1875 [==============================] - ETA: 0s - loss: 2.4319 - accuracy: 0.06 - ETA: 4s - loss: 1.3113 - accuracy: 0.55 - ETA: 4s - loss: 1.0485 - accuracy: 0.64 - ETA: 3s - loss: 0.9385 - accuracy: 0.68 - ETA: 3s - loss: 0.8818 - accuracy: 0.69 - ETA: 3s - loss: 0.8283 - accuracy: 0.70 - ETA: 3s - loss: 0.7952 - accuracy: 0.71 - ETA: 3s - loss: 0.7624 - accuracy: 0.73 - ETA: 3s - loss: 0.7399 - accuracy: 0.73 - ETA: 3s - loss: 0.7199 - accuracy: 0.74 - ETA: 3s - loss: 0.6984 - accuracy: 0.75 - ETA: 3s - loss: 0.6809 - accuracy: 0.75 - ETA: 3s - loss: 0.6715 - accuracy: 0.76 - ETA: 3s - loss: 0.6572 - accuracy: 0.76 - ETA: 3s - loss: 0.6465 - accuracy: 0.77 - ETA: 3s - loss: 0.6364 - accuracy: 0.77 - ETA: 3s - loss: 0.6357 - accuracy: 0.77 - ETA: 3s - loss: 0.6292 - accuracy: 0.77 - ETA: 3s - loss: 0.6223 - accuracy: 0.78 - ETA: 3s - loss: 0.6182 - accuracy: 0.78 - ETA: 3s - loss: 0.6147 - accuracy: 0.78 - ETA: 3s - loss: 0.6078 - accuracy: 0.78 - ETA: 3s - loss: 0.6024 - accuracy: 0.78 - ETA: 2s - loss: 0.5997 - accuracy: 0.78 - ETA: 2s - loss: 0.5958 - accuracy: 0.79 - ETA: 2s - loss: 0.5915 - accuracy: 0.79 - ETA: 2s - loss: 0.5890 - accuracy: 0.79 - ETA: 2s - loss: 0.5819 - accuracy: 0.79 - ETA: 2s - loss: 0.5780 - accuracy: 0.79 - ETA: 2s - loss: 0.5738 - accuracy: 0.79 - ETA: 2s - loss: 0.5699 - accuracy: 0.79 - ETA: 2s - loss: 0.5678 - accuracy: 0.79 - ETA: 2s - loss: 0.5634 - accuracy: 0.80 - ETA: 2s - loss: 0.5597 - accuracy: 0.80 - ETA: 2s - loss: 0.5570 - accuracy: 0.80 - ETA: 2s - loss: 0.5527 - accuracy: 0.80 - ETA: 2s - loss: 0.5504 - accuracy: 0.80 - ETA: 2s - loss: 0.5490 - accuracy: 0.80 - ETA: 2s - loss: 0.5459 - accuracy: 0.80 - ETA: 2s - loss: 0.5440 - accuracy: 0.80 - ETA: 2s - loss: 0.5426 - accuracy: 0.80 - ETA: 1s - loss: 0.5391 - accuracy: 0.80 - ETA: 1s - loss: 0.5383 - accuracy: 0.80 - ETA: 1s - loss: 0.5354 - accuracy: 0.81 - ETA: 1s - loss: 0.5330 - accuracy: 0.81 - ETA: 1s - loss: 0.5305 - accuracy: 0.81 - ETA: 1s - loss: 0.5271 - accuracy: 0.81 - ETA: 1s - loss: 0.5253 - accuracy: 0.81 - ETA: 1s - loss: 0.5231 - accuracy: 0.81 - ETA: 1s - loss: 0.5217 - accuracy: 0.81 - ETA: 1s - loss: 0.5201 - accuracy: 0.81 - ETA: 1s - loss: 0.5178 - accuracy: 0.81 - ETA: 1s - loss: 0.5158 - accuracy: 0.81 - ETA: 1s - loss: 0.5142 - accuracy: 0.81 - ETA: 1s - loss: 0.5123 - accuracy: 0.81 - ETA: 1s - loss: 0.5103 - accuracy: 0.81 - ETA: 1s - loss: 0.5072 - accuracy: 0.81 - ETA: 1s - loss: 0.5060 - accuracy: 0.82 - ETA: 1s - loss: 0.5053 - accuracy: 0.82 - ETA: 1s - loss: 0.5042 - accuracy: 0.82 - ETA: 0s - loss: 0.5032 - accuracy: 0.82 - ETA: 0s - loss: 0.5026 - accuracy: 0.82 - ETA: 0s - loss: 0.5015 - accuracy: 0.82 - ETA: 0s - loss: 0.5003 - accuracy: 0.82 - ETA: 0s - loss: 0.4981 - accuracy: 0.82 - ETA: 0s - loss: 0.4968 - accuracy: 0.82 - ETA: 0s - loss: 0.4948 - accuracy: 0.82 - ETA: 0s - loss: 0.4937 - accuracy: 0.82 - ETA: 0s - loss: 0.4918 - accuracy: 0.82 - ETA: 0s - loss: 0.4894 - accuracy: 0.82 - ETA: 0s - loss: 0.4881 - accuracy: 0.82 - ETA: 0s - loss: 0.4871 - accuracy: 0.82 - ETA: 0s - loss: 0.4851 - accuracy: 0.82 - ETA: 0s - loss: 0.4838 - accuracy: 0.82 - ETA: 0s - loss: 0.4830 - accuracy: 0.82 - ETA: 0s - loss: 0.4822 - accuracy: 0.82 - ETA: 0s - loss: 0.4807 - accuracy: 0.82 - ETA: 0s - loss: 0.4799 - accuracy: 0.82 - ETA: 0s - loss: 0.4790 - accuracy: 0.82 - ETA: 0s - loss: 0.4780 - accuracy: 0.82 - 4s 2ms/step - loss: 0.4779 - accuracy: 0.8289 - val_loss: 0.4244 - val_accuracy: 0.8478
Epoch 2/10
1875/1875 [==============================] - ETA: 0s - loss: 0.3019 - accuracy: 0.87 - ETA: 4s - loss: 0.3950 - accuracy: 0.86 - ETA: 3s - loss: 0.3898 - accuracy: 0.85 - ETA: 3s - loss: 0.3688 - accuracy: 0.86 - ETA: 3s - loss: 0.3645 - accuracy: 0.86 - ETA: 3s - loss: 0.3654 - accuracy: 0.86 - ETA: 3s - loss: 0.3730 - accuracy: 0.86 - ETA: 3s - loss: 0.3690 - accuracy: 0.86 - ETA: 3s - loss: 0.3702 - accuracy: 0.86 - ETA: 3s - loss: 0.3713 - accuracy: 0.86 - ETA: 3s - loss: 0.3668 - accuracy: 0.86 - ETA: 3s - loss: 0.3662 - accuracy: 0.87 - ETA: 3s - loss: 0.3652 - accuracy: 0.87 - ETA: 3s - loss: 0.3673 - accuracy: 0.86 - ETA: 3s - loss: 0.3666 - accuracy: 0.86 - ETA: 3s - loss: 0.3692 - accuracy: 0.86 - ETA: 3s - loss: 0.3697 - accuracy: 0.86 - ETA: 3s - loss: 0.3710 - accuracy: 0.86 - ETA: 3s - loss: 0.3695 - accuracy: 0.86 - ETA: 3s - loss: 0.3698 - accuracy: 0.86 - ETA: 3s - loss: 0.3730 - accuracy: 0.86 - ETA: 3s - loss: 0.3712 - accuracy: 0.86 - ETA: 3s - loss: 0.3707 - accuracy: 0.86 - ETA: 3s - loss: 0.3709 - accuracy: 0.86 - ETA: 3s - loss: 0.3722 - accuracy: 0.86 - ETA: 2s - loss: 0.3708 - accuracy: 0.86 - ETA: 2s - loss: 0.3713 - accuracy: 0.86 - ETA: 2s - loss: 0.3725 - accuracy: 0.86 - ETA: 2s - loss: 0.3704 - accuracy: 0.86 - ETA: 2s - loss: 0.3704 - accuracy: 0.86 - ETA: 2s - loss: 0.3690 - accuracy: 0.86 - ETA: 2s - loss: 0.3689 - accuracy: 0.86 - ETA: 2s - loss: 0.3695 - accuracy: 0.86 - ETA: 2s - loss: 0.3687 - accuracy: 0.86 - ETA: 2s - loss: 0.3686 - accuracy: 0.86 - ETA: 2s - loss: 0.3684 - accuracy: 0.86 - ETA: 2s - loss: 0.3673 - accuracy: 0.86 - ETA: 2s - loss: 0.3668 - accuracy: 0.86 - ETA: 2s - loss: 0.3679 - accuracy: 0.86 - ETA: 2s - loss: 0.3672 - accuracy: 0.86 - ETA: 2s - loss: 0.3671 - accuracy: 0.86 - ETA: 2s - loss: 0.3671 - accuracy: 0.86 - ETA: 1s - loss: 0.3665 - accuracy: 0.86 - ETA: 1s - loss: 0.3665 - accuracy: 0.86 - ETA: 1s - loss: 0.3672 - accuracy: 0.86 - ETA: 1s - loss: 0.3653 - accuracy: 0.86 - ETA: 1s - loss: 0.3646 - accuracy: 0.86 - ETA: 1s - loss: 0.3646 - accuracy: 0.86 - ETA: 1s - loss: 0.3651 - accuracy: 0.86 - ETA: 1s - loss: 0.3650 - accuracy: 0.86 - ETA: 1s - loss: 0.3648 - accuracy: 0.86 - ETA: 1s - loss: 0.3652 - accuracy: 0.86 - ETA: 1s - loss: 0.3658 - accuracy: 0.86 - ETA: 1s - loss: 0.3650 - accuracy: 0.86 - ETA: 1s - loss: 0.3640 - accuracy: 0.86 - ETA: 1s - loss: 0.3627 - accuracy: 0.86 - ETA: 1s - loss: 0.3630 - accuracy: 0.86 - ETA: 1s - loss: 0.3624 - accuracy: 0.86 - ETA: 1s - loss: 0.3623 - accuracy: 0.86 - ETA: 1s - loss: 0.3625 - accuracy: 0.86 - ETA: 1s - loss: 0.3623 - accuracy: 0.86 - ETA: 1s - loss: 0.3620 - accuracy: 0.86 - ETA: 0s - loss: 0.3617 - accuracy: 0.86 - ETA: 0s - loss: 0.3611 - accuracy: 0.86 - ETA: 0s - loss: 0.3606 - accuracy: 0.86 - ETA: 0s - loss: 0.3601 - accuracy: 0.86 - ETA: 0s - loss: 0.3597 - accuracy: 0.86 - ETA: 0s - loss: 0.3602 - accuracy: 0.86 - ETA: 0s - loss: 0.3608 - accuracy: 0.86 - ETA: 0s - loss: 0.3611 - accuracy: 0.86 - ETA: 0s - loss: 0.3611 - accuracy: 0.86 - ETA: 0s - loss: 0.3612 - accuracy: 0.86 - ETA: 0s - loss: 0.3607 - accuracy: 0.86 - ETA: 0s - loss: 0.3609 - accuracy: 0.86 - ETA: 0s - loss: 0.3611 - accuracy: 0.86 - ETA: 0s - loss: 0.3609 - accuracy: 0.86 - ETA: 0s - loss: 0.3606 - accuracy: 0.86 - ETA: 0s - loss: 0.3608 - accuracy: 0.86 - ETA: 0s - loss: 0.3609 - accuracy: 0.86 - ETA: 0s - loss: 0.3609 - accuracy: 0.86 - ETA: 0s - loss: 0.3609 - accuracy: 0.86 - ETA: 0s - loss: 0.3605 - accuracy: 0.86 - ETA: 0s - loss: 0.3604 - accuracy: 0.86 - ETA: 0s - loss: 0.3602 - accuracy: 0.86 - 4s 2ms/step - loss: 0.3601 - accuracy: 0.8682 - val_loss: 0.3846 - val_accuracy: 0.8613
Epoch 3/10
1875/1875 [==============================] - ETA: 0s - loss: 0.2594 - accuracy: 0.90 - ETA: 4s - loss: 0.3510 - accuracy: 0.87 - ETA: 3s - loss: 0.3414 - accuracy: 0.87 - ETA: 3s - loss: 0.3331 - accuracy: 0.87 - ETA: 3s - loss: 0.3201 - accuracy: 0.87 - ETA: 3s - loss: 0.3255 - accuracy: 0.87 - ETA: 3s - loss: 0.3194 - accuracy: 0.87 - ETA: 3s - loss: 0.3180 - accuracy: 0.87 - ETA: 3s - loss: 0.3146 - accuracy: 0.87 - ETA: 3s - loss: 0.3087 - accuracy: 0.88 - ETA: 3s - loss: 0.3118 - accuracy: 0.87 - ETA: 3s - loss: 0.3125 - accuracy: 0.87 - ETA: 3s - loss: 0.3156 - accuracy: 0.87 - ETA: 3s - loss: 0.3147 - accuracy: 0.88 - ETA: 3s - loss: 0.3117 - accuracy: 0.88 - ETA: 3s - loss: 0.3140 - accuracy: 0.88 - ETA: 3s - loss: 0.3159 - accuracy: 0.88 - ETA: 3s - loss: 0.3161 - accuracy: 0.88 - ETA: 3s - loss: 0.3140 - accuracy: 0.88 - ETA: 3s - loss: 0.3136 - accuracy: 0.88 - ETA: 3s - loss: 0.3153 - accuracy: 0.88 - ETA: 3s - loss: 0.3173 - accuracy: 0.87 - ETA: 3s - loss: 0.3218 - accuracy: 0.87 - ETA: 3s - loss: 0.3200 - accuracy: 0.87 - ETA: 3s - loss: 0.3218 - accuracy: 0.87 - ETA: 3s - loss: 0.3237 - accuracy: 0.87 - ETA: 2s - loss: 0.3238 - accuracy: 0.87 - ETA: 2s - loss: 0.3239 - accuracy: 0.87 - ETA: 2s - loss: 0.3246 - accuracy: 0.87 - ETA: 2s - loss: 0.3246 - accuracy: 0.87 - ETA: 2s - loss: 0.3238 - accuracy: 0.87 - ETA: 2s - loss: 0.3232 - accuracy: 0.87 - ETA: 2s - loss: 0.3235 - accuracy: 0.87 - ETA: 2s - loss: 0.3244 - accuracy: 0.87 - ETA: 2s - loss: 0.3250 - accuracy: 0.87 - ETA: 2s - loss: 0.3238 - accuracy: 0.87 - ETA: 2s - loss: 0.3236 - accuracy: 0.87 - ETA: 2s - loss: 0.3228 - accuracy: 0.87 - ETA: 2s - loss: 0.3221 - accuracy: 0.87 - ETA: 2s - loss: 0.3226 - accuracy: 0.87 - ETA: 2s - loss: 0.3240 - accuracy: 0.87 - ETA: 2s - loss: 0.3236 - accuracy: 0.87 - ETA: 1s - loss: 0.3234 - accuracy: 0.87 - ETA: 1s - loss: 0.3229 - accuracy: 0.87 - ETA: 1s - loss: 0.3245 - accuracy: 0.87 - ETA: 1s - loss: 0.3253 - accuracy: 0.87 - ETA: 1s - loss: 0.3252 - accuracy: 0.87 - ETA: 1s - loss: 0.3254 - accuracy: 0.87 - ETA: 1s - loss: 0.3261 - accuracy: 0.87 - ETA: 1s - loss: 0.3252 - accuracy: 0.87 - ETA: 1s - loss: 0.3251 - accuracy: 0.87 - ETA: 1s - loss: 0.3248 - accuracy: 0.87 - ETA: 1s - loss: 0.3258 - accuracy: 0.87 - ETA: 1s - loss: 0.3246 - accuracy: 0.87 - ETA: 1s - loss: 0.3241 - accuracy: 0.87 - ETA: 1s - loss: 0.3240 - accuracy: 0.87 - ETA: 1s - loss: 0.3239 - accuracy: 0.87 - ETA: 1s - loss: 0.3239 - accuracy: 0.87 - ETA: 1s - loss: 0.3239 - accuracy: 0.87 - ETA: 1s - loss: 0.3247 - accuracy: 0.87 - ETA: 1s - loss: 0.3242 - accuracy: 0.87 - ETA: 1s - loss: 0.3241 - accuracy: 0.87 - ETA: 0s - loss: 0.3237 - accuracy: 0.87 - ETA: 0s - loss: 0.3241 - accuracy: 0.87 - ETA: 0s - loss: 0.3246 - accuracy: 0.87 - ETA: 0s - loss: 0.3244 - accuracy: 0.87 - ETA: 0s - loss: 0.3243 - accuracy: 0.87 - ETA: 0s - loss: 0.3251 - accuracy: 0.87 - ETA: 0s - loss: 0.3250 - accuracy: 0.87 - ETA: 0s - loss: 0.3243 - accuracy: 0.87 - ETA: 0s - loss: 0.3253 - accuracy: 0.87 - ETA: 0s - loss: 0.3249 - accuracy: 0.87 - ETA: 0s - loss: 0.3247 - accuracy: 0.87 - ETA: 0s - loss: 0.3245 - accuracy: 0.87 - ETA: 0s - loss: 0.3242 - accuracy: 0.87 - ETA: 0s - loss: 0.3241 - accuracy: 0.87 - ETA: 0s - loss: 0.3244 - accuracy: 0.87 - ETA: 0s - loss: 0.3243 - accuracy: 0.87 - ETA: 0s - loss: 0.3239 - accuracy: 0.87 - ETA: 0s - loss: 0.3248 - accuracy: 0.87 - ETA: 0s - loss: 0.3244 - accuracy: 0.87 - ETA: 0s - loss: 0.3241 - accuracy: 0.88 - 4s 2ms/step - loss: 0.3242 - accuracy: 0.8799 - val_loss: 0.3620 - val_accuracy: 0.8699
Epoch 4/10
1875/1875 [==============================] - ETA: 0s - loss: 0.1509 - accuracy: 0.96 - ETA: 3s - loss: 0.2929 - accuracy: 0.88 - ETA: 3s - loss: 0.2929 - accuracy: 0.88 - ETA: 3s - loss: 0.3040 - accuracy: 0.88 - ETA: 3s - loss: 0.3054 - accuracy: 0.88 - ETA: 3s - loss: 0.2952 - accuracy: 0.89 - ETA: 3s - loss: 0.2991 - accuracy: 0.89 - ETA: 3s - loss: 0.2965 - accuracy: 0.89 - ETA: 4s - loss: 0.2967 - accuracy: 0.89 - ETA: 4s - loss: 0.3005 - accuracy: 0.89 - ETA: 4s - loss: 0.3009 - accuracy: 0.88 - ETA: 4s - loss: 0.2993 - accuracy: 0.88 - ETA: 4s - loss: 0.2990 - accuracy: 0.88 - ETA: 4s - loss: 0.3071 - accuracy: 0.88 - ETA: 3s - loss: 0.3073 - accuracy: 0.88 - ETA: 3s - loss: 0.3057 - accuracy: 0.88 - ETA: 3s - loss: 0.3052 - accuracy: 0.88 - ETA: 3s - loss: 0.3065 - accuracy: 0.88 - ETA: 3s - loss: 0.3058 - accuracy: 0.88 - ETA: 3s - loss: 0.3046 - accuracy: 0.88 - ETA: 3s - loss: 0.3021 - accuracy: 0.88 - ETA: 3s - loss: 0.3037 - accuracy: 0.88 - ETA: 3s - loss: 0.3027 - accuracy: 0.88 - ETA: 3s - loss: 0.3022 - accuracy: 0.88 - ETA: 3s - loss: 0.3012 - accuracy: 0.88 - ETA: 3s - loss: 0.3004 - accuracy: 0.88 - ETA: 3s - loss: 0.3005 - accuracy: 0.88 - ETA: 3s - loss: 0.3004 - accuracy: 0.88 - ETA: 3s - loss: 0.3002 - accuracy: 0.88 - ETA: 3s - loss: 0.2993 - accuracy: 0.88 - ETA: 2s - loss: 0.2976 - accuracy: 0.89 - ETA: 2s - loss: 0.2973 - accuracy: 0.88 - ETA: 2s - loss: 0.2975 - accuracy: 0.89 - ETA: 2s - loss: 0.2962 - accuracy: 0.89 - ETA: 2s - loss: 0.2963 - accuracy: 0.89 - ETA: 2s - loss: 0.2963 - accuracy: 0.89 - ETA: 2s - loss: 0.2974 - accuracy: 0.89 - ETA: 2s - loss: 0.2969 - accuracy: 0.89 - ETA: 2s - loss: 0.2963 - accuracy: 0.89 - ETA: 2s - loss: 0.2966 - accuracy: 0.89 - ETA: 2s - loss: 0.2985 - accuracy: 0.89 - ETA: 2s - loss: 0.2989 - accuracy: 0.89 - ETA: 2s - loss: 0.2995 - accuracy: 0.89 - ETA: 2s - loss: 0.3000 - accuracy: 0.89 - ETA: 1s - loss: 0.2996 - accuracy: 0.89 - ETA: 1s - loss: 0.2992 - accuracy: 0.89 - ETA: 1s - loss: 0.2990 - accuracy: 0.89 - ETA: 1s - loss: 0.2990 - accuracy: 0.89 - ETA: 1s - loss: 0.2991 - accuracy: 0.89 - ETA: 1s - loss: 0.2986 - accuracy: 0.89 - ETA: 1s - loss: 0.2985 - accuracy: 0.89 - ETA: 1s - loss: 0.2981 - accuracy: 0.89 - ETA: 1s - loss: 0.2981 - accuracy: 0.89 - ETA: 1s - loss: 0.2988 - accuracy: 0.89 - ETA: 1s - loss: 0.2986 - accuracy: 0.89 - ETA: 1s - loss: 0.2979 - accuracy: 0.89 - ETA: 1s - loss: 0.2981 - accuracy: 0.89 - ETA: 1s - loss: 0.2978 - accuracy: 0.89 - ETA: 1s - loss: 0.2973 - accuracy: 0.89 - ETA: 1s - loss: 0.2970 - accuracy: 0.89 - ETA: 1s - loss: 0.2971 - accuracy: 0.89 - ETA: 1s - loss: 0.2980 - accuracy: 0.89 - ETA: 0s - loss: 0.2980 - accuracy: 0.89 - ETA: 0s - loss: 0.2986 - accuracy: 0.89 - ETA: 0s - loss: 0.2988 - accuracy: 0.89 - ETA: 0s - loss: 0.2991 - accuracy: 0.89 - ETA: 0s - loss: 0.2996 - accuracy: 0.89 - ETA: 0s - loss: 0.3001 - accuracy: 0.89 - ETA: 0s - loss: 0.3006 - accuracy: 0.89 - ETA: 0s - loss: 0.3008 - accuracy: 0.89 - ETA: 0s - loss: 0.3009 - accuracy: 0.88 - ETA: 0s - loss: 0.3010 - accuracy: 0.88 - ETA: 0s - loss: 0.3011 - accuracy: 0.88 - ETA: 0s - loss: 0.3011 - accuracy: 0.88 - ETA: 0s - loss: 0.3022 - accuracy: 0.88 - ETA: 0s - loss: 0.3018 - accuracy: 0.88 - ETA: 0s - loss: 0.3016 - accuracy: 0.88 - ETA: 0s - loss: 0.3012 - accuracy: 0.88 - ETA: 0s - loss: 0.3008 - accuracy: 0.89 - ETA: 0s - loss: 0.3008 - accuracy: 0.89 - 4s 2ms/step - loss: 0.3005 - accuracy: 0.8902 - val_loss: 0.3331 - val_accuracy: 0.8797
Epoch 5/10
1875/1875 [==============================] - ETA: 0s - loss: 0.2307 - accuracy: 0.90 - ETA: 3s - loss: 0.2708 - accuracy: 0.90 - ETA: 3s - loss: 0.2830 - accuracy: 0.89 - ETA: 3s - loss: 0.2743 - accuracy: 0.89 - ETA: 3s - loss: 0.2733 - accuracy: 0.89 - ETA: 3s - loss: 0.2649 - accuracy: 0.90 - ETA: 3s - loss: 0.2606 - accuracy: 0.90 - ETA: 3s - loss: 0.2661 - accuracy: 0.90 - ETA: 3s - loss: 0.2681 - accuracy: 0.89 - ETA: 3s - loss: 0.2675 - accuracy: 0.89 - ETA: 3s - loss: 0.2653 - accuracy: 0.89 - ETA: 3s - loss: 0.2660 - accuracy: 0.89 - ETA: 3s - loss: 0.2649 - accuracy: 0.90 - ETA: 3s - loss: 0.2658 - accuracy: 0.90 - ETA: 3s - loss: 0.2627 - accuracy: 0.90 - ETA: 3s - loss: 0.2670 - accuracy: 0.89 - ETA: 3s - loss: 0.2652 - accuracy: 0.89 - ETA: 3s - loss: 0.2639 - accuracy: 0.89 - ETA: 3s - loss: 0.2634 - accuracy: 0.90 - ETA: 3s - loss: 0.2625 - accuracy: 0.90 - ETA: 3s - loss: 0.2632 - accuracy: 0.90 - ETA: 3s - loss: 0.2652 - accuracy: 0.89 - ETA: 3s - loss: 0.2637 - accuracy: 0.89 - ETA: 3s - loss: 0.2635 - accuracy: 0.89 - ETA: 3s - loss: 0.2632 - accuracy: 0.90 - ETA: 3s - loss: 0.2651 - accuracy: 0.89 - ETA: 2s - loss: 0.2637 - accuracy: 0.89 - ETA: 2s - loss: 0.2634 - accuracy: 0.89 - ETA: 2s - loss: 0.2648 - accuracy: 0.89 - ETA: 2s - loss: 0.2660 - accuracy: 0.89 - ETA: 2s - loss: 0.2666 - accuracy: 0.89 - ETA: 2s - loss: 0.2668 - accuracy: 0.89 - ETA: 2s - loss: 0.2660 - accuracy: 0.89 - ETA: 2s - loss: 0.2674 - accuracy: 0.89 - ETA: 2s - loss: 0.2671 - accuracy: 0.89 - ETA: 2s - loss: 0.2670 - accuracy: 0.89 - ETA: 2s - loss: 0.2664 - accuracy: 0.89 - ETA: 2s - loss: 0.2672 - accuracy: 0.89 - ETA: 2s - loss: 0.2681 - accuracy: 0.89 - ETA: 2s - loss: 0.2706 - accuracy: 0.89 - ETA: 2s - loss: 0.2704 - accuracy: 0.89 - ETA: 2s - loss: 0.2708 - accuracy: 0.89 - ETA: 2s - loss: 0.2718 - accuracy: 0.89 - ETA: 2s - loss: 0.2728 - accuracy: 0.89 - ETA: 1s - loss: 0.2736 - accuracy: 0.89 - ETA: 1s - loss: 0.2728 - accuracy: 0.89 - ETA: 1s - loss: 0.2723 - accuracy: 0.89 - ETA: 1s - loss: 0.2727 - accuracy: 0.89 - ETA: 1s - loss: 0.2732 - accuracy: 0.89 - ETA: 1s - loss: 0.2753 - accuracy: 0.89 - ETA: 1s - loss: 0.2755 - accuracy: 0.89 - ETA: 1s - loss: 0.2765 - accuracy: 0.89 - ETA: 1s - loss: 0.2766 - accuracy: 0.89 - ETA: 1s - loss: 0.2765 - accuracy: 0.89 - ETA: 1s - loss: 0.2774 - accuracy: 0.89 - ETA: 1s - loss: 0.2769 - accuracy: 0.89 - ETA: 1s - loss: 0.2781 - accuracy: 0.89 - ETA: 1s - loss: 0.2785 - accuracy: 0.89 - ETA: 1s - loss: 0.2784 - accuracy: 0.89 - ETA: 1s - loss: 0.2782 - accuracy: 0.89 - ETA: 1s - loss: 0.2783 - accuracy: 0.89 - ETA: 1s - loss: 0.2784 - accuracy: 0.89 - ETA: 0s - loss: 0.2786 - accuracy: 0.89 - ETA: 0s - loss: 0.2785 - accuracy: 0.89 - ETA: 0s - loss: 0.2787 - accuracy: 0.89 - ETA: 0s - loss: 0.2792 - accuracy: 0.89 - ETA: 0s - loss: 0.2795 - accuracy: 0.89 - ETA: 0s - loss: 0.2801 - accuracy: 0.89 - ETA: 0s - loss: 0.2804 - accuracy: 0.89 - ETA: 0s - loss: 0.2800 - accuracy: 0.89 - ETA: 0s - loss: 0.2798 - accuracy: 0.89 - ETA: 0s - loss: 0.2795 - accuracy: 0.89 - ETA: 0s - loss: 0.2805 - accuracy: 0.89 - ETA: 0s - loss: 0.2810 - accuracy: 0.89 - ETA: 0s - loss: 0.2809 - accuracy: 0.89 - ETA: 0s - loss: 0.2812 - accuracy: 0.89 - ETA: 0s - loss: 0.2808 - accuracy: 0.89 - ETA: 0s - loss: 0.2809 - accuracy: 0.89 - ETA: 0s - loss: 0.2805 - accuracy: 0.89 - ETA: 0s - loss: 0.2807 - accuracy: 0.89 - 4s 2ms/step - loss: 0.2807 - accuracy: 0.8957 - val_loss: 0.3321 - val_accuracy: 0.8831
Epoch 6/10
1875/1875 [==============================] - ETA: 0s - loss: 0.2249 - accuracy: 0.87 - ETA: 4s - loss: 0.2369 - accuracy: 0.91 - ETA: 3s - loss: 0.2308 - accuracy: 0.91 - ETA: 3s - loss: 0.2517 - accuracy: 0.90 - ETA: 3s - loss: 0.2609 - accuracy: 0.90 - ETA: 3s - loss: 0.2621 - accuracy: 0.90 - ETA: 3s - loss: 0.2601 - accuracy: 0.90 - ETA: 3s - loss: 0.2585 - accuracy: 0.90 - ETA: 3s - loss: 0.2597 - accuracy: 0.90 - ETA: 3s - loss: 0.2569 - accuracy: 0.90 - ETA: 3s - loss: 0.2599 - accuracy: 0.90 - ETA: 3s - loss: 0.2618 - accuracy: 0.90 - ETA: 3s - loss: 0.2632 - accuracy: 0.90 - ETA: 3s - loss: 0.2633 - accuracy: 0.90 - ETA: 3s - loss: 0.2623 - accuracy: 0.90 - ETA: 2s - loss: 0.2626 - accuracy: 0.90 - ETA: 2s - loss: 0.2625 - accuracy: 0.90 - ETA: 2s - loss: 0.2609 - accuracy: 0.90 - ETA: 2s - loss: 0.2602 - accuracy: 0.90 - ETA: 2s - loss: 0.2605 - accuracy: 0.90 - ETA: 2s - loss: 0.2613 - accuracy: 0.90 - ETA: 2s - loss: 0.2620 - accuracy: 0.90 - ETA: 2s - loss: 0.2644 - accuracy: 0.90 - ETA: 2s - loss: 0.2649 - accuracy: 0.90 - ETA: 2s - loss: 0.2659 - accuracy: 0.89 - ETA: 2s - loss: 0.2650 - accuracy: 0.90 - ETA: 2s - loss: 0.2673 - accuracy: 0.89 - ETA: 2s - loss: 0.2667 - accuracy: 0.90 - ETA: 2s - loss: 0.2659 - accuracy: 0.90 - ETA: 2s - loss: 0.2652 - accuracy: 0.90 - ETA: 2s - loss: 0.2666 - accuracy: 0.90 - ETA: 2s - loss: 0.2662 - accuracy: 0.90 - ETA: 2s - loss: 0.2667 - accuracy: 0.89 - ETA: 2s - loss: 0.2668 - accuracy: 0.90 - ETA: 2s - loss: 0.2658 - accuracy: 0.90 - ETA: 2s - loss: 0.2652 - accuracy: 0.90 - ETA: 2s - loss: 0.2649 - accuracy: 0.90 - ETA: 1s - loss: 0.2656 - accuracy: 0.90 - ETA: 1s - loss: 0.2661 - accuracy: 0.90 - ETA: 1s - loss: 0.2661 - accuracy: 0.90 - ETA: 1s - loss: 0.2654 - accuracy: 0.90 - ETA: 1s - loss: 0.2658 - accuracy: 0.90 - ETA: 1s - loss: 0.2662 - accuracy: 0.90 - ETA: 1s - loss: 0.2659 - accuracy: 0.90 - ETA: 1s - loss: 0.2660 - accuracy: 0.90 - ETA: 1s - loss: 0.2663 - accuracy: 0.90 - ETA: 1s - loss: 0.2668 - accuracy: 0.90 - ETA: 1s - loss: 0.2668 - accuracy: 0.90 - ETA: 1s - loss: 0.2670 - accuracy: 0.90 - ETA: 1s - loss: 0.2678 - accuracy: 0.90 - ETA: 1s - loss: 0.2679 - accuracy: 0.90 - ETA: 1s - loss: 0.2681 - accuracy: 0.89 - ETA: 1s - loss: 0.2681 - accuracy: 0.90 - ETA: 1s - loss: 0.2676 - accuracy: 0.90 - ETA: 1s - loss: 0.2676 - accuracy: 0.90 - ETA: 0s - loss: 0.2676 - accuracy: 0.90 - ETA: 0s - loss: 0.2676 - accuracy: 0.90 - ETA: 0s - loss: 0.2682 - accuracy: 0.90 - ETA: 0s - loss: 0.2682 - accuracy: 0.90 - ETA: 0s - loss: 0.2677 - accuracy: 0.90 - ETA: 0s - loss: 0.2676 - accuracy: 0.90 - ETA: 0s - loss: 0.2675 - accuracy: 0.90 - ETA: 0s - loss: 0.2675 - accuracy: 0.90 - ETA: 0s - loss: 0.2677 - accuracy: 0.90 - ETA: 0s - loss: 0.2672 - accuracy: 0.90 - ETA: 0s - loss: 0.2674 - accuracy: 0.89 - ETA: 0s - loss: 0.2676 - accuracy: 0.89 - ETA: 0s - loss: 0.2678 - accuracy: 0.89 - ETA: 0s - loss: 0.2677 - accuracy: 0.89 - ETA: 0s - loss: 0.2672 - accuracy: 0.90 - ETA: 0s - loss: 0.2675 - accuracy: 0.90 - ETA: 0s - loss: 0.2676 - accuracy: 0.89 - ETA: 0s - loss: 0.2676 - accuracy: 0.89 - ETA: 0s - loss: 0.2681 - accuracy: 0.89 - ETA: 0s - loss: 0.2677 - accuracy: 0.89 - 4s 2ms/step - loss: 0.2677 - accuracy: 0.8997 - val_loss: 0.3424 - val_accuracy: 0.8778
Epoch 7/10
1875/1875 [==============================] - ETA: 0s - loss: 0.4205 - accuracy: 0.87 - ETA: 3s - loss: 0.2115 - accuracy: 0.91 - ETA: 4s - loss: 0.2112 - accuracy: 0.92 - ETA: 4s - loss: 0.2169 - accuracy: 0.91 - ETA: 4s - loss: 0.2194 - accuracy: 0.92 - ETA: 4s - loss: 0.2296 - accuracy: 0.91 - ETA: 4s - loss: 0.2240 - accuracy: 0.91 - ETA: 4s - loss: 0.2275 - accuracy: 0.91 - ETA: 4s - loss: 0.2298 - accuracy: 0.91 - ETA: 3s - loss: 0.2342 - accuracy: 0.91 - ETA: 3s - loss: 0.2362 - accuracy: 0.91 - ETA: 3s - loss: 0.2384 - accuracy: 0.91 - ETA: 3s - loss: 0.2411 - accuracy: 0.91 - ETA: 3s - loss: 0.2386 - accuracy: 0.91 - ETA: 3s - loss: 0.2420 - accuracy: 0.91 - ETA: 3s - loss: 0.2425 - accuracy: 0.91 - ETA: 3s - loss: 0.2468 - accuracy: 0.90 - ETA: 3s - loss: 0.2466 - accuracy: 0.90 - ETA: 3s - loss: 0.2468 - accuracy: 0.90 - ETA: 3s - loss: 0.2445 - accuracy: 0.90 - ETA: 3s - loss: 0.2438 - accuracy: 0.90 - ETA: 3s - loss: 0.2453 - accuracy: 0.90 - ETA: 3s - loss: 0.2484 - accuracy: 0.90 - ETA: 3s - loss: 0.2482 - accuracy: 0.90 - ETA: 2s - loss: 0.2477 - accuracy: 0.90 - ETA: 2s - loss: 0.2473 - accuracy: 0.90 - ETA: 2s - loss: 0.2470 - accuracy: 0.90 - ETA: 2s - loss: 0.2464 - accuracy: 0.90 - ETA: 2s - loss: 0.2474 - accuracy: 0.90 - ETA: 2s - loss: 0.2475 - accuracy: 0.90 - ETA: 2s - loss: 0.2465 - accuracy: 0.90 - ETA: 2s - loss: 0.2456 - accuracy: 0.90 - ETA: 2s - loss: 0.2448 - accuracy: 0.90 - ETA: 2s - loss: 0.2457 - accuracy: 0.90 - ETA: 2s - loss: 0.2465 - accuracy: 0.90 - ETA: 2s - loss: 0.2462 - accuracy: 0.90 - ETA: 2s - loss: 0.2457 - accuracy: 0.90 - ETA: 2s - loss: 0.2456 - accuracy: 0.90 - ETA: 2s - loss: 0.2463 - accuracy: 0.90 - ETA: 2s - loss: 0.2458 - accuracy: 0.90 - ETA: 2s - loss: 0.2461 - accuracy: 0.90 - ETA: 1s - loss: 0.2461 - accuracy: 0.90 - ETA: 1s - loss: 0.2468 - accuracy: 0.90 - ETA: 1s - loss: 0.2463 - accuracy: 0.90 - ETA: 1s - loss: 0.2473 - accuracy: 0.90 - ETA: 1s - loss: 0.2475 - accuracy: 0.90 - ETA: 1s - loss: 0.2475 - accuracy: 0.90 - ETA: 1s - loss: 0.2480 - accuracy: 0.90 - ETA: 1s - loss: 0.2476 - accuracy: 0.90 - ETA: 1s - loss: 0.2477 - accuracy: 0.90 - ETA: 1s - loss: 0.2479 - accuracy: 0.90 - ETA: 1s - loss: 0.2487 - accuracy: 0.90 - ETA: 1s - loss: 0.2484 - accuracy: 0.90 - ETA: 1s - loss: 0.2486 - accuracy: 0.90 - ETA: 1s - loss: 0.2484 - accuracy: 0.90 - ETA: 1s - loss: 0.2484 - accuracy: 0.90 - ETA: 1s - loss: 0.2488 - accuracy: 0.90 - ETA: 1s - loss: 0.2494 - accuracy: 0.90 - ETA: 1s - loss: 0.2488 - accuracy: 0.90 - ETA: 0s - loss: 0.2493 - accuracy: 0.90 - ETA: 0s - loss: 0.2494 - accuracy: 0.90 - ETA: 0s - loss: 0.2489 - accuracy: 0.90 - ETA: 0s - loss: 0.2493 - accuracy: 0.90 - ETA: 0s - loss: 0.2493 - accuracy: 0.90 - ETA: 0s - loss: 0.2492 - accuracy: 0.90 - ETA: 0s - loss: 0.2497 - accuracy: 0.90 - ETA: 0s - loss: 0.2504 - accuracy: 0.90 - ETA: 0s - loss: 0.2510 - accuracy: 0.90 - ETA: 0s - loss: 0.2513 - accuracy: 0.90 - ETA: 0s - loss: 0.2514 - accuracy: 0.90 - ETA: 0s - loss: 0.2514 - accuracy: 0.90 - ETA: 0s - loss: 0.2514 - accuracy: 0.90 - ETA: 0s - loss: 0.2513 - accuracy: 0.90 - ETA: 0s - loss: 0.2511 - accuracy: 0.90 - ETA: 0s - loss: 0.2509 - accuracy: 0.90 - ETA: 0s - loss: 0.2513 - accuracy: 0.90 - ETA: 0s - loss: 0.2512 - accuracy: 0.90 - 4s 2ms/step - loss: 0.2510 - accuracy: 0.9052 - val_loss: 0.3325 - val_accuracy: 0.8813
Epoch 8/10
1875/1875 [==============================] - ETA: 0s - loss: 0.0650 - accuracy: 1.00 - ETA: 3s - loss: 0.2143 - accuracy: 0.93 - ETA: 3s - loss: 0.2265 - accuracy: 0.91 - ETA: 3s - loss: 0.2314 - accuracy: 0.91 - ETA: 3s - loss: 0.2265 - accuracy: 0.91 - ETA: 3s - loss: 0.2175 - accuracy: 0.92 - ETA: 3s - loss: 0.2209 - accuracy: 0.92 - ETA: 3s - loss: 0.2239 - accuracy: 0.91 - ETA: 3s - loss: 0.2256 - accuracy: 0.91 - ETA: 3s - loss: 0.2283 - accuracy: 0.91 - ETA: 3s - loss: 0.2304 - accuracy: 0.91 - ETA: 3s - loss: 0.2311 - accuracy: 0.91 - ETA: 3s - loss: 0.2319 - accuracy: 0.91 - ETA: 3s - loss: 0.2312 - accuracy: 0.91 - ETA: 3s - loss: 0.2324 - accuracy: 0.91 - ETA: 3s - loss: 0.2340 - accuracy: 0.91 - ETA: 3s - loss: 0.2333 - accuracy: 0.91 - ETA: 2s - loss: 0.2333 - accuracy: 0.91 - ETA: 2s - loss: 0.2344 - accuracy: 0.91 - ETA: 2s - loss: 0.2333 - accuracy: 0.91 - ETA: 2s - loss: 0.2336 - accuracy: 0.91 - ETA: 2s - loss: 0.2337 - accuracy: 0.91 - ETA: 2s - loss: 0.2357 - accuracy: 0.91 - ETA: 2s - loss: 0.2364 - accuracy: 0.91 - ETA: 2s - loss: 0.2364 - accuracy: 0.91 - ETA: 2s - loss: 0.2360 - accuracy: 0.91 - ETA: 2s - loss: 0.2359 - accuracy: 0.91 - ETA: 2s - loss: 0.2374 - accuracy: 0.91 - ETA: 2s - loss: 0.2379 - accuracy: 0.91 - ETA: 2s - loss: 0.2373 - accuracy: 0.91 - ETA: 2s - loss: 0.2382 - accuracy: 0.91 - ETA: 2s - loss: 0.2381 - accuracy: 0.91 - ETA: 2s - loss: 0.2380 - accuracy: 0.91 - ETA: 2s - loss: 0.2386 - accuracy: 0.91 - ETA: 2s - loss: 0.2383 - accuracy: 0.91 - ETA: 2s - loss: 0.2384 - accuracy: 0.91 - ETA: 2s - loss: 0.2396 - accuracy: 0.91 - ETA: 2s - loss: 0.2387 - accuracy: 0.91 - ETA: 1s - loss: 0.2383 - accuracy: 0.91 - ETA: 1s - loss: 0.2388 - accuracy: 0.91 - ETA: 1s - loss: 0.2397 - accuracy: 0.91 - ETA: 1s - loss: 0.2393 - accuracy: 0.91 - ETA: 1s - loss: 0.2391 - accuracy: 0.91 - ETA: 1s - loss: 0.2394 - accuracy: 0.91 - ETA: 1s - loss: 0.2396 - accuracy: 0.91 - ETA: 1s - loss: 0.2392 - accuracy: 0.91 - ETA: 1s - loss: 0.2385 - accuracy: 0.91 - ETA: 1s - loss: 0.2395 - accuracy: 0.91 - ETA: 1s - loss: 0.2393 - accuracy: 0.91 - ETA: 1s - loss: 0.2396 - accuracy: 0.91 - ETA: 1s - loss: 0.2398 - accuracy: 0.91 - ETA: 1s - loss: 0.2399 - accuracy: 0.91 - ETA: 1s - loss: 0.2393 - accuracy: 0.91 - ETA: 1s - loss: 0.2398 - accuracy: 0.91 - ETA: 1s - loss: 0.2397 - accuracy: 0.91 - ETA: 1s - loss: 0.2401 - accuracy: 0.90 - ETA: 1s - loss: 0.2399 - accuracy: 0.90 - ETA: 0s - loss: 0.2406 - accuracy: 0.90 - ETA: 0s - loss: 0.2398 - accuracy: 0.90 - ETA: 0s - loss: 0.2392 - accuracy: 0.90 - ETA: 0s - loss: 0.2397 - accuracy: 0.90 - ETA: 0s - loss: 0.2410 - accuracy: 0.90 - ETA: 0s - loss: 0.2408 - accuracy: 0.90 - ETA: 0s - loss: 0.2415 - accuracy: 0.90 - ETA: 0s - loss: 0.2421 - accuracy: 0.90 - ETA: 0s - loss: 0.2426 - accuracy: 0.90 - ETA: 0s - loss: 0.2419 - accuracy: 0.90 - ETA: 0s - loss: 0.2428 - accuracy: 0.90 - ETA: 0s - loss: 0.2423 - accuracy: 0.90 - ETA: 0s - loss: 0.2419 - accuracy: 0.90 - ETA: 0s - loss: 0.2424 - accuracy: 0.90 - ETA: 0s - loss: 0.2423 - accuracy: 0.90 - ETA: 0s - loss: 0.2422 - accuracy: 0.90 - ETA: 0s - loss: 0.2419 - accuracy: 0.90 - ETA: 0s - loss: 0.2423 - accuracy: 0.90 - ETA: 0s - loss: 0.2427 - accuracy: 0.90 - ETA: 0s - loss: 0.2417 - accuracy: 0.90 - 4s 2ms/step - loss: 0.2417 - accuracy: 0.9091 - val_loss: 0.3316 - val_accuracy: 0.8840
Epoch 9/10
1875/1875 [==============================] - ETA: 0s - loss: 0.2847 - accuracy: 0.84 - ETA: 3s - loss: 0.2580 - accuracy: 0.89 - ETA: 3s - loss: 0.2399 - accuracy: 0.90 - ETA: 3s - loss: 0.2306 - accuracy: 0.91 - ETA: 3s - loss: 0.2268 - accuracy: 0.91 - ETA: 3s - loss: 0.2198 - accuracy: 0.91 - ETA: 3s - loss: 0.2168 - accuracy: 0.92 - ETA: 3s - loss: 0.2216 - accuracy: 0.91 - ETA: 3s - loss: 0.2278 - accuracy: 0.91 - ETA: 3s - loss: 0.2280 - accuracy: 0.91 - ETA: 3s - loss: 0.2280 - accuracy: 0.91 - ETA: 3s - loss: 0.2261 - accuracy: 0.91 - ETA: 3s - loss: 0.2243 - accuracy: 0.91 - ETA: 3s - loss: 0.2226 - accuracy: 0.91 - ETA: 3s - loss: 0.2261 - accuracy: 0.91 - ETA: 3s - loss: 0.2281 - accuracy: 0.91 - ETA: 2s - loss: 0.2266 - accuracy: 0.91 - ETA: 2s - loss: 0.2281 - accuracy: 0.91 - ETA: 2s - loss: 0.2294 - accuracy: 0.91 - ETA: 2s - loss: 0.2306 - accuracy: 0.91 - ETA: 2s - loss: 0.2320 - accuracy: 0.91 - ETA: 2s - loss: 0.2311 - accuracy: 0.91 - ETA: 2s - loss: 0.2305 - accuracy: 0.91 - ETA: 2s - loss: 0.2307 - accuracy: 0.91 - ETA: 2s - loss: 0.2314 - accuracy: 0.91 - ETA: 2s - loss: 0.2313 - accuracy: 0.91 - ETA: 2s - loss: 0.2308 - accuracy: 0.91 - ETA: 2s - loss: 0.2300 - accuracy: 0.91 - ETA: 2s - loss: 0.2297 - accuracy: 0.91 - ETA: 2s - loss: 0.2299 - accuracy: 0.91 - ETA: 2s - loss: 0.2301 - accuracy: 0.91 - ETA: 2s - loss: 0.2297 - accuracy: 0.91 - ETA: 2s - loss: 0.2296 - accuracy: 0.91 - ETA: 2s - loss: 0.2297 - accuracy: 0.91 - ETA: 2s - loss: 0.2303 - accuracy: 0.91 - ETA: 2s - loss: 0.2306 - accuracy: 0.91 - ETA: 2s - loss: 0.2306 - accuracy: 0.91 - ETA: 1s - loss: 0.2303 - accuracy: 0.91 - ETA: 1s - loss: 0.2298 - accuracy: 0.91 - ETA: 1s - loss: 0.2302 - accuracy: 0.91 - ETA: 1s - loss: 0.2301 - accuracy: 0.91 - ETA: 1s - loss: 0.2310 - accuracy: 0.91 - ETA: 1s - loss: 0.2310 - accuracy: 0.91 - ETA: 1s - loss: 0.2312 - accuracy: 0.91 - ETA: 1s - loss: 0.2305 - accuracy: 0.91 - ETA: 1s - loss: 0.2305 - accuracy: 0.91 - ETA: 1s - loss: 0.2317 - accuracy: 0.91 - ETA: 1s - loss: 0.2319 - accuracy: 0.91 - ETA: 1s - loss: 0.2320 - accuracy: 0.91 - ETA: 1s - loss: 0.2322 - accuracy: 0.91 - ETA: 1s - loss: 0.2327 - accuracy: 0.91 - ETA: 1s - loss: 0.2334 - accuracy: 0.91 - ETA: 1s - loss: 0.2331 - accuracy: 0.91 - ETA: 1s - loss: 0.2327 - accuracy: 0.91 - ETA: 1s - loss: 0.2320 - accuracy: 0.91 - ETA: 1s - loss: 0.2325 - accuracy: 0.91 - ETA: 0s - loss: 0.2334 - accuracy: 0.91 - ETA: 0s - loss: 0.2333 - accuracy: 0.91 - ETA: 0s - loss: 0.2329 - accuracy: 0.91 - ETA: 0s - loss: 0.2320 - accuracy: 0.91 - ETA: 0s - loss: 0.2324 - accuracy: 0.91 - ETA: 0s - loss: 0.2322 - accuracy: 0.91 - ETA: 0s - loss: 0.2334 - accuracy: 0.91 - ETA: 0s - loss: 0.2338 - accuracy: 0.91 - ETA: 0s - loss: 0.2342 - accuracy: 0.91 - ETA: 0s - loss: 0.2339 - accuracy: 0.91 - ETA: 0s - loss: 0.2342 - accuracy: 0.91 - ETA: 0s - loss: 0.2333 - accuracy: 0.91 - ETA: 0s - loss: 0.2331 - accuracy: 0.91 - ETA: 0s - loss: 0.2329 - accuracy: 0.91 - ETA: 0s - loss: 0.2330 - accuracy: 0.91 - ETA: 0s - loss: 0.2325 - accuracy: 0.91 - ETA: 0s - loss: 0.2330 - accuracy: 0.91 - ETA: 0s - loss: 0.2329 - accuracy: 0.91 - ETA: 0s - loss: 0.2327 - accuracy: 0.91 - 4s 2ms/step - loss: 0.2334 - accuracy: 0.9133 - val_loss: 0.3296 - val_accuracy: 0.8894
Epoch 10/10
1875/1875 [==============================] - ETA: 0s - loss: 0.4754 - accuracy: 0.87 - ETA: 3s - loss: 0.2514 - accuracy: 0.90 - ETA: 3s - loss: 0.2290 - accuracy: 0.91 - ETA: 3s - loss: 0.2225 - accuracy: 0.91 - ETA: 3s - loss: 0.2142 - accuracy: 0.92 - ETA: 3s - loss: 0.2201 - accuracy: 0.91 - ETA: 3s - loss: 0.2217 - accuracy: 0.91 - ETA: 3s - loss: 0.2208 - accuracy: 0.91 - ETA: 3s - loss: 0.2221 - accuracy: 0.91 - ETA: 3s - loss: 0.2206 - accuracy: 0.91 - ETA: 3s - loss: 0.2190 - accuracy: 0.91 - ETA: 3s - loss: 0.2164 - accuracy: 0.91 - ETA: 3s - loss: 0.2157 - accuracy: 0.92 - ETA: 3s - loss: 0.2159 - accuracy: 0.91 - ETA: 3s - loss: 0.2184 - accuracy: 0.91 - ETA: 2s - loss: 0.2191 - accuracy: 0.91 - ETA: 2s - loss: 0.2172 - accuracy: 0.91 - ETA: 2s - loss: 0.2171 - accuracy: 0.91 - ETA: 2s - loss: 0.2163 - accuracy: 0.91 - ETA: 2s - loss: 0.2165 - accuracy: 0.91 - ETA: 2s - loss: 0.2162 - accuracy: 0.91 - ETA: 2s - loss: 0.2157 - accuracy: 0.91 - ETA: 2s - loss: 0.2167 - accuracy: 0.91 - ETA: 2s - loss: 0.2166 - accuracy: 0.91 - ETA: 2s - loss: 0.2151 - accuracy: 0.91 - ETA: 2s - loss: 0.2161 - accuracy: 0.91 - ETA: 2s - loss: 0.2166 - accuracy: 0.91 - ETA: 2s - loss: 0.2165 - accuracy: 0.91 - ETA: 2s - loss: 0.2174 - accuracy: 0.91 - ETA: 2s - loss: 0.2169 - accuracy: 0.91 - ETA: 2s - loss: 0.2177 - accuracy: 0.91 - ETA: 2s - loss: 0.2178 - accuracy: 0.91 - ETA: 2s - loss: 0.2172 - accuracy: 0.91 - ETA: 2s - loss: 0.2179 - accuracy: 0.91 - ETA: 2s - loss: 0.2186 - accuracy: 0.91 - ETA: 1s - loss: 0.2184 - accuracy: 0.91 - ETA: 1s - loss: 0.2187 - accuracy: 0.91 - ETA: 1s - loss: 0.2175 - accuracy: 0.91 - ETA: 1s - loss: 0.2178 - accuracy: 0.91 - ETA: 1s - loss: 0.2186 - accuracy: 0.91 - ETA: 1s - loss: 0.2187 - accuracy: 0.91 - ETA: 1s - loss: 0.2188 - accuracy: 0.91 - ETA: 1s - loss: 0.2191 - accuracy: 0.91 - ETA: 1s - loss: 0.2190 - accuracy: 0.91 - ETA: 1s - loss: 0.2202 - accuracy: 0.91 - ETA: 1s - loss: 0.2206 - accuracy: 0.91 - ETA: 1s - loss: 0.2208 - accuracy: 0.91 - ETA: 1s - loss: 0.2203 - accuracy: 0.91 - ETA: 1s - loss: 0.2206 - accuracy: 0.91 - ETA: 1s - loss: 0.2206 - accuracy: 0.91 - ETA: 1s - loss: 0.2209 - accuracy: 0.91 - ETA: 1s - loss: 0.2213 - accuracy: 0.91 - ETA: 1s - loss: 0.2219 - accuracy: 0.91 - ETA: 1s - loss: 0.2221 - accuracy: 0.91 - ETA: 1s - loss: 0.2223 - accuracy: 0.91 - ETA: 1s - loss: 0.2220 - accuracy: 0.91 - ETA: 0s - loss: 0.2224 - accuracy: 0.91 - ETA: 0s - loss: 0.2223 - accuracy: 0.91 - ETA: 0s - loss: 0.2229 - accuracy: 0.91 - ETA: 0s - loss: 0.2227 - accuracy: 0.91 - ETA: 0s - loss: 0.2231 - accuracy: 0.91 - ETA: 0s - loss: 0.2230 - accuracy: 0.91 - ETA: 0s - loss: 0.2226 - accuracy: 0.91 - ETA: 0s - loss: 0.2227 - accuracy: 0.91 - ETA: 0s - loss: 0.2228 - accuracy: 0.91 - ETA: 0s - loss: 0.2232 - accuracy: 0.91 - ETA: 0s - loss: 0.2236 - accuracy: 0.91 - ETA: 0s - loss: 0.2229 - accuracy: 0.91 - ETA: 0s - loss: 0.2227 - accuracy: 0.91 - ETA: 0s - loss: 0.2230 - accuracy: 0.91 - ETA: 0s - loss: 0.2229 - accuracy: 0.91 - ETA: 0s - loss: 0.2226 - accuracy: 0.91 - ETA: 0s - loss: 0.2222 - accuracy: 0.91 - ETA: 0s - loss: 0.2225 - accuracy: 0.91 - ETA: 0s - loss: 0.2222 - accuracy: 0.91 - ETA: 0s - loss: 0.2223 - accuracy: 0.91 - 4s 2ms/step - loss: 0.2230 - accuracy: 0.9168 - val_loss: 0.3288 - val_accuracy: 0.8887
Out[13]:
<tensorflow.python.keras.callbacks.History at 0x27e792b0>

 

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值