思路:题目的意思是,游一棵树或者是森林,然后要在某些节点上放置一个警察来防卫,然后每个警察呢只能防卫到自己所在节点和相邻的节点,求所有节点都在直接或间接被防卫的时候需要的最少警察数目。
意思显然,然后就是dp了;对于当前节点的决策是选与不选,dp[i][j],表示第i个节点的是否直接放置警察;
初始化是dp[i][1]=1;
dp[u][1] += min(dp[v][1],dp[v][0]);
dp[u][0] += dp[v][1];
由于存在森林,所以要遍历一遍。
/*****************************************
Author :Crazy_AC(JamesQi)
Time :2015
File Name :
*****************************************/
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <sstream>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <map>
#include <set>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>
using namespace std;
#define MEM(a,b) memset(a,b,sizeof a)
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> ii;
const int inf = 1 << 30;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
inline int Readint(){
char c = getchar();
while(!isdigit(c)) c = getchar();
int x = 0;
while(isdigit(c)){
x = x * 10 + c - '0';
c = getchar();
}
return x;
}
int n;
vector<int> G[1510];
int dp[1510][2];
bool vis[1510];
void dfs(int u,int fa){
vis[u]=true;
dp[u][1]=1;
dp[u][0]=0;
for (int i=0;i<G[u].size();++i){
int v = G[u][i];
if (v==fa || vis[v]) continue;
dfs(v,u);
dp[u][0] += dp[v][1];
dp[u][1] += min(dp[v][0],dp[v][1]);
}
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(scanf("%d",&n)!=EOF){
memset(dp, 0,sizeof dp);
for (int i = 0;i < n;++i) G[i].clear();
for (int i = 1;i <= n;++i){
int u,num;
scanf("%d:(%d)",&u,&num);
int v;
while(num--){
scanf("%d",&v);
G[v].push_back(u);
G[u].push_back(v);
}
}
memset(vis, false,sizeof vis);
int ans=0;
for (int i = 0;i < n;++i){
if (!vis[i]) {
dfs(i,-1);
ans += min(dp[i][1],dp[i][0]);
}
}
printf("%d\n", ans);
}
return 0;
}