《Generative Adversarial Networks》

目录

参考资料

模型和算法

理论证明


参考资料

Generative Adversarial Nets (nips.cc)

goodfeli/adversarial: Code and hyperparameters for the paper "Generative Adversarial Networks" (github.com)

[github.com](https://github.com/mli/paper-reading)

主要的工作:

1、无监督学习,不需要使用标号数据;

2、使用监督学习的损失函数;

3、生成对抗的思想和网络架构;

模型和算法

论文的模型使用函数描述的方式给出:

\mathop{min} \limits_{G} \ \mathop{max}\limits_{D}V(D,G)=E_{x-p_{data}(x)}[logD(x)]+E_{z-p_z(x)}[log(1-D(G(z)))]

D(x)指的是判别模型;G(z)指的是生成模型;模型的含义是指使得V(D,G)最大的D(x),再使得V(D,G)最小的G(x),一种不断迭代更新生成和判别的算法计算方式。算法如图1所示:

 算法的主要流程:

'''
epoch次数迭代:
	(1)更新判别器(迭代k步):
			a. 从噪声分布中采样m个样本-minibatch;
			b.从数据生成分布中中采样m个样本-minbatch;
			c.根据随机梯度更新判别器;
	(2)更新生成器:
			a.从噪声分布中采样m个样本-minibatch;
			b.根据随机梯度更新生成器;
end epoch
'''

算法的流程的形象表示如图2所示:图中绿色指的是生成样本;黑色点指的是真实样本;蓝色虚线指的是判别器;

 

理论证明

  1. 相关的数学公式

    计算期望:

    计算KL散度:

  2. 证明过程

证明的过程比较简单,只需要两三步:

(1)最优的判别器满足:

 (2)取得生成器最优时就是V(D,G)的判别器最优时的导数等于0(形象的理解就是生成器和判别器旗鼓相当,当判别器最优时的生成器才能取得最优):

 

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值