使用pytorch实现深度可分离卷积改进模型的实战实践

这一篇是前面一篇的续集,使用深度可分离进行改进,使得网络尽量能在低端的设备快速运行。先简单解释深度可分离,然后将这个思想应用于改进网络。这样的做法同样可以用深度可分离之外的很多网络结构去修改原来的网络,实现性能或者准确度的目标。

前面的文章在这:

pytorch复现经典生成对抗式的超分辨率网络

深度可分离:

深度可分离分为深度卷积部分和点卷积部分。深度卷积部分使用分组卷积,分组数等于输入的通道数。然后使用 1 × 1 1\times 1 1×1的普通点卷积实现不同通道信息的融合。然后在深度卷积和点卷积中间加上批归一化层和激活层即可。改成深度可分离卷积后的网络如下图所示:

在这里插入图片描述

pytorch实现深度可分离的生成模型:

代码中的:class GeneratorDepthwiseBlock(nn.Module):就是深度可分离卷积模块。然后Generator中使用config.G.base_block_type来区别不同的基本模块类型。

import torch
from torch import nn
import torchvision
from torch import Tensor

class GeneratorDepthwiseBlock(nn.Module):
    """
    生成器重复的部分,使用深度可分离卷积的思想
    """

    def __init__(self, channel, kernel_size) -> None:
        super(GeneratorDepthwiseBlock, self).__init__()

        self.channel = channel
        self.conv11 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                kernel_size=(kernel_size, kernel_size),
                                stride=(1, 1), padding=(1, 1), groups=channel)
        self.bn11 = nn.BatchNorm2d(num_features=channel)
        self.p_relu11 = nn.PReLU()
        self.conv12 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                kernel_size=(1, 1), stride=(1, 1))
        self.bn12 = nn.BatchNorm2d(num_features=channel)
        self.p_relu12 = nn.PReLU()

        self.conv21 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                kernel_size=(kernel_size, kernel_size),
                                stride=(1, 1), padding=(1, 1), groups=channel)
        self.bn21 = nn.BatchNorm2d(num_features=channel)
        self.conv22 = nn.Conv2d(in_channels=channel, out_channels=channel,
                                kernel_size=(1, 1), stride=(1, 1))
        self.bn22 = nn.BatchNorm2d(num_features=channel)

    def forward(self, x: Tensor) -> Tensor:
        """
        前向推断
        :param x:
        :return:
        """
        identity = x
        out = self.conv11(x)
        out = self.bn11(out)
        out = self.p_relu11(out)
        out = self.conv12(out)
        out = self.bn12(out)
        out = self.p_relu12(out)

        out = self.conv21(out)
        out = self.bn21(out)
        out = self.conv22(out)
        out = self.bn22(out)
        out += identity
        return out


class GeneratorBasicBlock(nn.Module):
    """
    生成器重复的部分
    """

    def __init__(self, channel, kernel_size) -> None:
        super(GeneratorBasicBlock, self).__init__()

        self.channel = channel
        self.conv1 = nn.Conv2d(in_channels=channel, out_channels=channel,
                               kernel_size=(kernel_size, kernel_size),
                               stride=(1, 1), padding=(1, 1))
        self.bn1 = nn.BatchNorm2d(num_features=channel)
        self.p_relu1 = nn.PReLU()
        self.conv2 = nn.Conv2d(in_channels=channel, out_channels=channel,
                               kernel_size=(kernel_size, kernel_size),
                               stride=(1, 1), padding=(1, 1))
        self.bn2 = nn.BatchNorm2d(num_features=channel)

    def forward(self, x: Tensor) -> Tensor:
        """
        前向推断
        :param x:
        :return:
        """
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.p_relu1(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out += identity
        return out


class PixelShufflerBlock(nn.Module):
    """
    生成器最后的pixelshuffler
    """

    def __init__(self, in_channel, out_channel) -> None:
        super(PixelShufflerBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        self.pixels_shuffle = nn.PixelShuffle(upscale_factor=2)
        self.prelu = nn.PReLU()

    def forward(self, x: Tensor) -> Tensor:
        """
        前向
        """
        out = self.conv1(x)
        out = self.pixels_shuffle(out)
        out = self.prelu(out)
        return out


class Generator(nn.Module):
    """
    生成器
    """

    def __init__(self, config) -> None:
        # Generator parameters
        super(Generator, self).__init__()
        large_kernel_size = config.G.large_kernel_size  # = 9
        small_kernel_size = config.G.small_kernel_size  # = 3
        n_channels = config.G.n_channels  # = 64
        n_blocks = config.G.n_blocks  # = 16
        base_block_type = config.G.base_block_type  # 'depthwise_conv_residual'  # 'conv_residual' or 'depthwise_conv_residual'

        # base block
        if base_block_type == 'depthwise_conv_residual':
            self.repeat_block = GeneratorDepthwiseBlock
        if base_block_type == 'conv_residual':
            self.repeat_block = GeneratorBasicBlock

        self.conv1 = nn.Conv2d(in_channels=3, out_channels=n_channels,
                               kernel_size=(large_kernel_size, large_kernel_size),
                               stride=(1, 1), padding=(4, 4))
        self.prelu1 = nn.PReLU()
        self.B_residul_block = self._make_layer(self.repeat_block, n_channels,
                                                n_blocks, small_kernel_size)
        self.conv2 = nn.Conv2d(in_channels=n_channels, out_channels=n_channels,
                               kernel_size=(small_kernel_size, small_kernel_size),
                               stride=(1, 1), padding=(1, 1))
        self.bn1 = nn.BatchNorm2d(n_channels)
        self.pixel_shuffle_block1 = PixelShufflerBlock(n_channels, 4 * n_channels)
        self.pixel_shuffle_block2 = PixelShufflerBlock(n_channels, 4 * n_channels)
        self.conv3 = nn.Conv2d(in_channels=n_channels, out_channels=3,
                               kernel_size=(large_kernel_size, large_kernel_size),
                               stride=(1, 1), padding=(4, 4))

    def _make_layer(self, base_block, n_channels, n_block, kernel_size) -> nn.Sequential:
        """
        构建重复的B个基本块
        :param base_block: 基本块
        :param n_channels: 块里面的通道数
        :param n_block: 块数
        :return:
        """
        layers = []
        self.base_block = base_block
        for _ in range(n_block):
            layers.append(self.base_block(n_channels, kernel_size))
        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        """
        前向的实现
        """
        out = self.conv1(x)
        out = self.prelu1(out)
        identity = out
        out = self.B_residul_block(out)
        out = self.conv2(out)
        out = self.bn1(out)
        out += identity
        out = self.pixel_shuffle_block1(out)
        out = self.pixel_shuffle_block2(out)
        out = self.conv3(out)

        return out

    def forward(self, x: Tensor) -> Tensor:
        """
        前向
        """
        return self._forward_impl(x)
  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值