简介
排列和组合是概率与组合数学中的基本概念。排列关注的是从集合中选取一定数量的元素,并考虑它们的顺序,而组合则强调元素的选择,而不考虑顺序。这两个概念在解决问题中有广泛的应用,如在统计学、概率论、密码学等领域。总的来说,排列和组合为我们提供了一种方式,通过数学的手段来计算和理解从集合中选择元素的不同方式。🏃
排列与组合
-
排列是指从一个集合中选择一些元素,按照一定的顺序进行排列。如果我们有一个集合 S S S,包含 n n n个元素,那么从中选择 k k k个元素进行排列的方式数(不放回,不考虑重复)用 P ( n , k ) P(n,k) P(n,k)、 P k n P_{k}^{n} Pkn或者 A n k A_{n}^{k} Ank表示,计算公式为:
P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(n−k)!n!
其中 n ! n! n!表示 n n n的阶乘,即 n ! = n × ( n − 1 ) × ( n − 2 ) × … × 2 × 1 n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 n!=n×(n−1)×(n−2)×…×2×1。
🙋【注意: 0 ! = 1 0!=1 0!=1】 -
组合是指从一个集合中选择一些元素,不考虑其顺序。如果我们有一个集合 S S S,包含 n n n个元素,那么从中选择 k k k个元素进行组合的方式数用 C ( n , k ) C(n,k) C(n,k)或者 C k n C_{k}^{n} Ckn表示,计算公式为:
C ( n , k ) = n ! r ! × ( n − k ) ! C(n, k) = \frac{n!}{r! \times (n-k)!} C(n,k)=r!×(n−k)!n!
符号说明
-
排列: A {\rm A} A(Arrangement)或 P {\rm P} P(Permutation)。国内虽然采用了新的符号A(估计是想和概率论中的概率P区分开),但国际上仍然使用P。
-
组合: C {\rm C} C(Combination)表示有选择(choose)的意思。国内、国际均采用符号C!
🙋【注意:这里博主使用国际通用表示方式。】 -
从n个元素中选取k个不同元素的组合数: P k n {\rm P}^{n}_{k} Pkn
-
从n个元素中选取k个不同元素的排列数: C k n {\rm C}^{n}_{k} Ckn
🙋【注意:国内排列数和组合数上下标位置一般与此处的相反,即 A n k {\rm A}^{k}_{n} Ank、 C n k {\rm C}^{k}_{n} Cnk】
公式
P
k
n
=
n
!
n
−
k
!
{\rm P}^{n}_{k}=\frac{n!}{n-k!}
Pkn=n−k!n!
C
k
n
=
n
!
(
n
−
k
)
!
k
!
{\rm C}^{n}_{k}=\frac{n!}{(n-k)!k!}
Ckn=(n−k)!k!n!
公式推导
∵ A k n = C k n A k k ∴ C k n = A k n A k k = n ! n − k ! k ! ( k − k ) ! = n ! 0 ! ( n − k ) ! k ! = n ! ( n − k ) ! k ! \because{\rm A}^{n}_{k}={\rm C}^{n}_{k}{\rm A}^{k}_{k} \\ \therefore{\rm C}^{n}_{k}=\frac{{\rm A}^{n}_{k}}{{\rm A}^{k}_{k}}=\frac{\frac{n!}{n-k!}}{\frac{k!}{(k-k)!}}=\frac{n!0!}{(n-k)!k!}=\frac{n!}{(n-k)!k!} ∵Akn=CknAkk∴Ckn=AkkAkn=(k−k)!k!n−k!n!=(n−k)!k!n!0!=(n−k)!k!n!
参考资料
收集整理和创作不易, 若有帮助🉑, 请帮忙点赞
👍➕收藏
❤️, 谢谢!✨✨🚀🚀