初等数论 1.6 最大公因数

定义:设 a 1 , a 2 , d ∈ Z a_1,a_2,d\in\Z a1,a2,dZ,若 d ∣ a 1 , d ∣ a 2 d\mid a_1,d\mid a_2 da1,da2,则称 d d d a 1 a_1 a1 a 2 a_2 a2的公因数(common divisor).
一般地,设 a 1 , a 2 , ⋯   , a n , d ∈ Z a_1,a_2,\cdots,a_n,d\in\Z a1,a2,,an,dZ,若 d ∣ a i d\mid a_i dai ∀ 1 ≤ i ≤ n \forall1\le i \le n 1in成立,则称 d d d a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an的公因数.
定义:设 a 1 , a 2 ∈ Z a_1,a_2\in\Z a1,a2Z不全为 0 0 0,称 a 1 , a 2 a_1,a_2 a1,a2公因数中最大者为 a 1 , a 2 a_1,a_2 a1,a2的最大公因数(greatest common divisor),记做 g c d ( a 1 , a 2 ) gcd(a_1,a_2) gcd(a1,a2) ( a 1 , a 2 ) (a_1,a_2) (a1,a2).
一般地,设 a 1 , a 2 , ⋯   , a n ∈ Z a_1,a_2,\cdots,a_n\in\Z a1,a2,,anZ不全为 0 0 0,称 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an公因数中最大者为 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an的最大公因数,记做 g c d ( a 1 , a 2 , ⋯   , a n ) gcd(a_1,a_2,\cdots,a_n) gcd(a1,a2,,an) ( a 1 , a 2 , ⋯   , a n ) (a_1,a_2,\cdots,a_n) (a1,a2,,an).

d d d a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an的公因数,则 − d -d d也是 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an的公因数.所以 ( a 1 , a 2 , ⋯   , a n ) ∈ Z + (a_1,a_2,\cdots,a_n)\in\Z^+ (a1,a2,,an)Z+.

定义:若 ( a 1 , a 2 ) = 1 (a_1,a_2)=1 (a1,a2)=1,则称 a 1 , a 2 a_1,a_2 a1,a2互素.
一般地,若 ( a 1 , a 2 , ⋯   , a n ) = 1 (a_1,a_2,\cdots,a_n)=1 (a1,a2,,an)=1,则称 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an互素.

a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an两两互素,则 ( a 1 , a 2 , ⋯   , a n ) = 1 (a_1,a_2,\cdots,a_n)=1 (a1,a2,,an)=1.
a , b ∈ Z a,b\in\Z a,bZ不全为 0 0 0,则 k ( a , b ) ∣ k ∈ Z = m a + n b ∣ m , n ∈ Z \displaystyle {k(a,b)\mid k\in\Z}={ma+nb\mid m,n\in\Z} k(a,b)kZ=ma+nbm,nZ

定理:设 a 1 , a 2 , ⋯   , a n ∈ Z a_1,a_2,\cdots,a_n\in\Z a1,a2,,anZ,记 A = y ∣ y = ∑ i = 1 n a i x i , x i ∈ Z , 1 ≤ i ≤ n \displaystyle A={y\mid y=\sum_{i=1}^{n}{a_ix_i},\quad x_i\in\Z,\quad 1\le i \le n} A=yy=i=1naixi,xiZ,1in,则 ( a 1 , a 2 , ⋯   , a n ) (a_1,a_2,\cdots,a_n) (a1,a2,,an) A A A中最小的正整数.
推论:(Bezout定理):设 a 1 , a 2 , ⋯   , a n ∈ Z a_1,a_2,\cdots,a_n\in\Z a1,a2,,anZ不全为 0 0 0,则 ∃ x 1 , x 2 , ⋯   , x n ∈ Z \exists x_1,x_2,\cdots,x_n\in\Z x1,x2,,xnZ,使得 ∑ i = 1 n a i x i = ( a 1 , a 2 , ⋯   , a n ) \displaystyle \sum_{i=1}^{n}{a_ix_i}=(a_1,a_2,\cdots,a_n) i=1naixi=(a1,a2,,an).
推论:若 d ∣ a i d\mid a_i dai ∀ 1 ≤ i ≤ n \forall 1\le i \le n 1in成立,则 d ∣ ( a 1 , a 2 , ⋯   , a n ) d\mid (a_1,a_2,\cdots,a_n) d(a1,a2,,an).
一般地,若 b i ∣ a i b_i\mid a_i biai ∀ 1 ≤ i ≤ n \forall 1\le i \le n 1in成立,则 ( b 1 , b 2 , ⋯   , b n ) ∣ ( a 1 , a 2 , ⋯   , a n ) (b_1,b_2,\cdots,b_n)\mid (a_1,a_2,\cdots,a_n) (b1,b2,,bn)(a1,a2,,an).
推论:若 a 1 , a 2 , ⋯   , a n ∈ Z a_1,a_2,\cdots,a_n\in\Z a1,a2,,anZ不全为 0 0 0,对 ∀ m ∈ Z \forall m\in\Z mZ ∃ x 1 , x 2 , ⋯   , x n ∈ Z \exists x_1,x_2,\cdots,x_n\in\Z x1,x2,,xnZ,使得 ∑ i = 1 n a i x i = m \displaystyle \sum_{i=1}^{n}{a_ix_i}=m i=1naixi=m当且仅当 ( a 1 , a 2 , ⋯   , a n ) ∣ m (a_1,a_2,\cdots,a_n)\mid m (a1,a2,,an)m.

∑ i = 1 n a I x i = 1 \displaystyle \sum_{i=1}^{n}{a_Ix_i}=1 i=1naIxi=1当且仅当 ( a 1 , a 2 , ⋯   , a n ) = 1 (a_1,a_2,\cdots,a_n)=1 (a1,a2,,an)=1.

定理:最大公因数的一些性质:
1. ( a , b ) = ( b , a ) = ( ∣ a ∣ , ∣ b ∣ ) (a,b)=(b,a)=(\lvert a \rvert , \lvert b \rvert ) (a,b)=(b,a)=(a,b).
1’. ( a 1 , a 2 , ⋯   , a n ) = ( a i 1 , a i 2 , ⋯   , a i n ) = ( ∣ a 1 ∣ , ∣ a 2 ∣ , ⋯   , ∣ a n ∣ ) (a_1,a_2,\cdots,a_n)=(a_{i_1},a_{i_2},\cdots,a_{i_n})=(\lvert a_1 \rvert , \lvert a_2 \rvert , \cdots , \lvert a_n \rvert ) (a1,a2,,an)=(ai1,ai2,,ain)=(a1,a2,,an).其中, ( i 1 , i 2 , ⋯   , i n ) (i_1,i_2,\cdots,i_n) (i1,i2,,in) ( 1 , 2 , ⋯   , n ) (1,2,\cdots,n) (1,2,,n)的一个排列.
2.若 a ≠ 0 a\neq 0 a̸=0,则 ( a , 0 ) = a ( a , a ) = ∣ a ∣ (a,0)=a\quad (a,a)=\lvert a \rvert (a,0)=a(a,a)=a.

一般地, ( 0 , a 2 , ⋯   , a n ) = ( a 2 , ⋯   , a n ) (0,a_2,\cdots,a_n)=(a_2,\cdots,a_n) (0,a2,,an)=(a2,,an).

3.若 b ∣ a b\mid a ba,则 ( a , b ) = ∣ b ∣ (a,b)=\lvert b \rvert (a,b)=b,且对 ∀ c ∈ Z \forall c\in\Z cZ,有 ( b , c ) ∣ ( a , c ) (b,c)\mid (a,c) (b,c)(a,c).
4. ( a 1 , a 2 ) = ( a 1 , a 2 + k a 1 ) ∀ k ∈ Z (a_1,a_2)=(a_1,a_2+ka_1)\quad \forall k\in\Z (a1,a2)=(a1,a2+ka1)kZ.
4’. ( a 1 , a 2 , ⋯   , a n ) = ( a 1 , a 2 + k 2 a 1 , ⋯   , a n + k n a 1 ) ∀ k 2 , ⋯   , k n ∈ Z (a_1,a_2,\cdots,a_n)=(a_1,a_2+k_2a_1,\cdots,a_n+k_na_1)\quad \forall k_2,\cdots,k_n \in\Z (a1,a2,,an)=(a1,a2+k2a1,,an+kna1)k2,,knZ.
5.若 a = b q + r a=bq+r a=bq+r,则 ( a , b ) = ( b , r ) q , r ∈ Z (a,b)=(b,r)\quad q,r\in\Z (a,b)=(b,r)q,rZ.
6. ( m a , m b ) = ∣ m ∣ ( a , b ) (ma,mb)=\lvert m \rvert (a,b) (ma,mb)=m(a,b),其中 m ≠ 0 m\neq 0 m̸=0.
6’. ( m a 1 , m a 2 , ⋯   , m a n ) = ∣ m ∣ ( a 1 , a 2 , ⋯   , a n ) (ma_1,ma_2,\cdots,ma_n)=\lvert m \rvert (a_1,a_2,\cdots,a_n) (ma1,ma2,,man)=m(a1,a2,,an).
7. ( a ( a , b ) , b ( a , b ) ) = 1 \displaystyle (\frac{a}{(a,b)},\frac{b}{(a,b)})=1 ((a,b)a,(a,b)b)=1.
7’. ( a 1 ( a 1 , a 2 , ⋯   , a n ) , a 2 ( a 1 , a 2 , ⋯   , a n ) , ⋯   , a n ( a 1 , a 2 , ⋯   , a n ) ) = 1 \displaystyle (\frac{a_1}{(a_1,a_2,\cdots,a_n)},\frac{a_2}{(a_1,a_2,\cdots,a_n)},\cdots,\frac{a_n}{(a_1,a_2,\cdots,a_n)})=1 ((a1,a2,,an)a1,(a1,a2,,an)a2,,(a1,a2,,an)an)=1.
8.设 a , b , c ∈ Z a,b,c\in\Z a,b,cZ,若 b ∣ a c b\mid ac bac ( a , b ) = 1 (a,b)=1 (a,b)=1,则 b ∣ c b\mid c bc.

a ∣ c , b ∣ c a\mid c,b\mid c acbc ( a , b ) = 1 (a,b)=1 (a,b)=1,则 a b ∣ c ab\mid c abc.
( a , b ) = 1 (a,b)=1 (a,b)=1,则 ( a , b c ) = ( a , c ) (a,bc)=(a,c) (a,bc)=(a,c).

8’. ( a i , b j ) = 1 1 ≤ i ≤ m 1 ≤ j ≤ n \displaystyle (a_i,b_j)=1 \quad 1\le i \le m \quad 1\le j \le n (ai,bj)=11im1jn,则 ( a 1 a 2 ⋯ a n , b 1 b 2 ⋯ b n ) = 1 (a_1a_2\cdots a_n,b_1b_2\cdots b_n)=1 (a1a2an,b1b2bn)=1.

对于 ∀ m , n ∈ Z , ( a , b ) = 1 \forall m,n\in\Z,(a,b)=1 m,nZ(a,b)=1当且仅当 ( a m , b n ) = 1 (a^m,b^n)=1 (am,bn)=1.

8’’.设 a , b ∈ Z a,b\in\Z a,bZ不全为 0 0 0 n ∈ Z + n\in\Z^+ nZ+,则 ( a n , b n ) = ( a , b ) n (a^n,b^n)=(a,b)^n (an,bn)=(a,b)n.
8’’’.设 a , b ∈ Z a,b\in\Z a,bZ a ∣ b a\mid b ab当且仅当 a n ∣ b n a^n\mid b^n anbn.
定义:与公因子相似,设 a , b ∈ Z a,b\in\Z a,bZ均不为 0 0 0,若 a 1 ∣ m , a 2 ∣ m a_1\mid m,\quad a_2\mid m a1m,a2m,则称 m m m a 1 , a 2 a_1,a_2 a1,a2的公倍数.
一般地,非零整数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an的公倍数中的最小正整数称为 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an的最小公倍数(least common multiple).记为 [ a 1 , a 2 , ⋯   , a n ] \displaystyle [a_1,a_2,\cdots,a_n] [a1,a2,,an].

最小公倍数和最大公因数有相似的性质.

定理:设 a , b ∈ Z a,b\in\Z a,bZ均不为 0 0 0,则 ( a , b ) [ a , b ] = ∣ a b ∣ \displaystyle(a,b)[a,b]=\lvert ab \rvert (a,b)[a,b]=ab.
定义:设 a ∈ Z a\in\Z aZ a > 1 a>1 a>1.若 a a a的正因数只有 1 1 1 a a a,则称 a a a为素数(prime number).否则称 a a a为合数.

定义: π ( x ) \pi(x) π(x)表示小于或等于某个实数 x x x的素数个数.

定理:设 a ∈ Z a\in\Z aZ a > 1 a>1 a>1,则 a a a的除 1 1 1以外的最小正因数为素数,且 a a a为合数时,必有 q ≤ a \displaystyle q\le \sqrt{a} qa .
推论(Eratosthenes筛法):若大于 1 1 1的整数 a a a不能被任何不超过 a \displaystyle \sqrt{a} a 的素数整除,则 a a a必为素数.
定理:素数有无穷多个.

证明:设 Z + \Z^+ Z+中只有有限个素数 p 1 , p 2 , ⋯   , p k p_1,p_2,\cdots,p_k p1,p2,,pk,考虑 a = p 1 p 2 ⋯ p k + 1 a=p_1p_2\cdots p_k+1 a=p1p2pk+1,显然 a > 1 a>1 a>1, a a a有素因数 p p p,且 p ∈ p 1 , p 2 , ⋯   , p k \displaystyle p\in{p_1,p_2,\cdots,p_k} pp1,p2,,pk,则 p ∣ p 1 p 2 ⋯ p k p\mid p_1p_2\cdots p_k pp1p2pk.由 p ∣ a p\mid a pa p = ± 1 p=\pm 1 p=±1.与 p p p是素数矛盾,所以素数有无穷多个.

定理:设 p p p是素数, a ∈ Z a\in\Z aZ,则 p ∣ a p\mid a pa ( p , a ) = 1 (p,a)=1 (p,a)=1.
推论:设 p p p是素数, a 1 , a 2 , ⋯   , a n ∈ Z a_1,a_2,\cdots,a_n\in\Z a1,a2,,anZ,若 p ∣ a 1 a 2 ⋯ a n p\mid a_1a_2\cdots a_n pa1a2an,则 ∃ a i 1 ≤ i ≤ n \exists a_i \quad 1\le i \le n ai1in,使得 p ∣ a i p\mid a_i pai.

p p p为素数, p ∣ a n ( n ≥ 1 ) \displaystyle p\mid a^n \quad (n\ge 1) pan(n1)当且仅当 p ∣ a p\mid a pa.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值