高等代数 线性空间

#这是笔记,用来存档,没有自己的想法,也许内容还很trivial
V V V是一个数域 F \Bbb{F} F上的非空集合,并且有映射: + : V × V → V +:V \times V \rightarrow V +:V×VV ∘ : F × V → V \circ:\Bbb{F} \times V \rightarrow V :F×VV满足条件:
1. ∀ α , β , γ ∈ V ( α + β ) + γ = α + ( β + γ ) \forall \alpha,\beta,\gamma \in V \quad (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) α,β,γV(α+β)+γ=α+(β+γ)
2. ∃ 0 ∈ V 0 + α = α + 0 = α \exists 0\in V \quad 0+\alpha=\alpha+0=\alpha 0V0+α=α+0=α
3. ∀ α ∈ V , ∃ β ∈ V α + β = β + α = 0 \forall \alpha\in V,\exists\beta\in V \quad \alpha+\beta=\beta+\alpha=0 αV,βVα+β=β+α=0
4. α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
5. ∃ 1 ∈ F 1 ∘ α = α \exists 1\in\Bbb{F} \quad 1\circ\alpha=\alpha 1F1α=α
6. a , b ∈ F ( a ⋅ b ) ∘ α = a ∘ ( b ∘ α ) a,b\in\Bbb{F} \quad (a\cdot b)\circ\alpha=a\circ(b\circ\alpha) a,bF(ab)α=a(bα)
7. a ∘ ( α + β ) = a ∘ α + a ∘ β a\circ(\alpha+\beta)=a\circ\alpha+a\circ\beta a(α+β)=aα+aβ
8. ( a + b ) ∘ α = a ∘ α + b ∘ α (a+b)\circ\alpha=a\circ\alpha+b\circ\alpha (a+b)α=aα+bα
则称( V , + , ∘ V,+,\circ V,+,)构成数域 F \Bbb{F} F上的线性空间,称 V V V中的元素为向量.
注.对于二元运算 + + +,满足性质123,( V , + V,+ V,+)是群,且满足性质4,构成交换群.
思考: V = C V=\Complex V=C,映射 + : V × V → V , ( α , β ) ↦ α + β +:V \times V \rightarrow V,(\alpha,\beta)↦\alpha+\beta +:V×VV,(α,β)α+β ∘ : C × V → V , ( k , α ) ↦ k ‾ α \circ:\Complex\times V \rightarrow V,(k,\alpha)↦\overline{k}\alpha :C×VV,(k,α)kα,验证( V , + , ∘ V,+,\circ V,+,)是否构成线性空间.
命题:设( V , + , ∘ V,+,\circ V,+,)是数域 F \Bbb{F} F上的线性空间,则:
1. V V V中的零向量是唯一的.
2. V V V中向量的负向量是唯一的.
3. k ∘ α = 0 ↔ k = 0 k\circ\alpha=0\leftrightarrow k=0 kα=0k=0 α = 0 \alpha=0 α=0
4. − ( k ∘ α ) = ( − k ) ∘ α -(k\circ\alpha)=(-k)\circ\alpha (kα)=(k)α,其中 − ( k ∘ α ) -(k\circ\alpha) (kα) ( k ∘ α ) (k\circ\alpha) (kα)的负向量.
思考:由线性空间的性质1235678推出性质4.
定义:设 V V V是数域 F \Bbb{F} F上的线性空间,设 α 1 , α 2 , ⋯   , α m ∈ V , k 1 , k 2 , ⋯   , k m ∈ F \alpha_1,\alpha_2,\cdots,\alpha_m\in V,k_1,k_2,\cdots,k_m\in\Bbb{F} α1,α2,,αmV,k1,k2,,kmF,称 ∑ i = 1 m k i α i \displaystyle\sum_{i=1}^{m}k_i\alpha_i i=1mkiαi为向量 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm的线性组合.
定义:称向量 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm的线性相关,若存在不全为 0 0 0的数 k 1 , k 2 , ⋯   , k m ∈ F k_1,k_2,\cdots,k_m\in\Bbb{F} k1,k2,,kmF,使得 ∑ i = 1 m k i α i = 0 \displaystyle\sum_{i=1}^{m}k_i\alpha_i=0 i=1mkiαi=0.否则称向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm的线性无关.
注.1. α ∈ V \alpha\in V αV线性相关 ↔ α = 0 \leftrightarrow\alpha=0 α=0.
2.向量组整体线性无关 → \rightarrow 部分线性无关;部分线性相关 → \rightarrow 整体线性相关.
线性空间可以引入维数的概念,注意到并不是所有线性空间都是有限维的,比如( F [ x ] , + , ⋅ \Bbb{F}[x],+,\cdot F[x],+,)是无穷维的.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CSDN是中国最大的技术社区之一,提供了许多优质的技术教程和学习资料。其中包括了高等代数讲义和线性代数讲义。 高等代数讲义是一本涵盖了高等数学基础知识的教材。高等代数作为数学的一门重要分支,研究了向量空间线性变换、矩阵论等内容。这本讲义通过规范的章节结构和详细的解释,帮助读者系统地掌握高等代数的基本概念和理论。它还提供了大量的习题和例题,帮助读者巩固所学的知识,并提供了答案和解析供参考。 线性代数讲义是一本介绍线性代数的教材。线性代数是数学中的一门重要学科,广泛应用于工程、科学以及经济学等领域。这本讲义从矩阵和向量开始,逐步介绍了线性代数的核心概念,如线性方程组、线性变换、特征值和特征向量等。通过清晰的图表和例子,读者可以更好地理解和运用线性代数的相关知识。该讲义还包含了一些应用实例和习题,帮助读者将所学的线性代数知识应用到实际问题中。 CSDN的高等代数讲义和线性代数讲义都是经过专业人员编写和校对的,并且提供了免费的电子版下载。它们为学习者提供了方便、简洁和系统的学习材料,有助于读者提升数学基础和解决实际问题的能力。无论是学生还是从业人员,都可以通过阅读这些讲义,有效地学习和应用高等代数线性代数的相关知识。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值