《初等数论》:最大公因数与最小公倍数

最大公因数

定义

  a i   ( i = 1 , 2 , ⋯   , n )   \,a_i\,(i=1,2,\cdots,n)\, ai(i=1,2,,n)是不全为零的整数,如果   d ∣ a i   ( i = 1 , 2 , ⋯   , n )   \,d \mid a_i\,(i=1,2,\cdots,n)\, dai(i=1,2,,n),则称   d   \,d\, d   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an的公因数;   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an的公因数中最大的,称为   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an的最大公因数,记为   ( a 1 , a 2 , ⋯   , a n )   \,(a_1,a_2,\cdots,a_n)\, (a1,a2,,an)

如果   a 1 , a 2 , ⋯   , a n = 1   \,a_1,a_2,\cdots,a_n=1\, a1,a2,,an=1,则称   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an互质(互素);如果   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an中每两个数都互质(互素),则称   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an两两互质(互素)

定理

如果   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an   n   \,n\, n个不全为零的整数,则   ( a 1 , a 2 , ⋯   , a n ) = ( ∣ a 1 ∣ , ∣ a 2 ∣ , ⋯   , ∣ a n ∣ )   \,(a_1,a_2,\cdots,a_n)=(\left|a_1 \right|,\left| a_2 \right |,\cdots,\left | a_n \right |)\, (a1,a2,,an)=(a1,a2,,an)

如果   b ≠ 0   \,b \ne 0\, b=0,则   ( 0 , b ) = ∣ b ∣   \,(0,b)=\left | b \right |\, (0,b)=b

  a = b k + c   \,a=bk+c\, a=bk+c,则   ( a , b ) = ( b , c )   \,(a,b)=(b,c)\, (a,b)=(b,c)

(辗转相除法) 用欧几里得算法求任意两个正整数   a   \,a\, a   b   \,b\, b的最大公因数,就是以每次的余数为除数去除上一次的除数,直至余数为   0   \,0\, 0,那么最后一个不为零的余数,便是   a   \,a\, a   b   \,b\, b的最大公因数。
过程如下所示:
a = b q 1 + r 1 ( 0 < r 1 < b ) b = r 1 q 2 + r 2 ( 0 < r 2 < r 1 ) r 1 = r 2 q 3 + r 3 ( 0 < r 3 < r 2 ) ⋯ r n − 2 = r n − 1 q n + r n ( 0 < r n < r n − 1 ) r n − 1 = r n q n + 1 于 是 有 : ( a , b ) = ( b , r 1 ) = ( r 1 , r 2 ) = ⋯ = ( r n − 1 , r n ) = ( r n , 0 ) = r n \qquad \qquad \begin{aligned}a &= bq_1+r_1 \quad (0 \lt r_1 \lt b) \\ b &= r_1q_2+r_2 \quad (0 \lt r_2 \lt r_1) \\ r_1 &= r_2q_3+r_3 \quad (0 \lt r_3 \lt r_2)\\ &\cdots \\ r_{n-2} &= r_{n-1}q_n+r_n \quad (0 \lt r_n \lt r_{n-1}) \\ r_{n-1} &= r_nq_{n+1}\end{aligned} \\ \qquad 于是有:(a,b)=(b,r_1)=(r_1,r_2)=\cdots=(r_{n-1},r_n)=(r_n,0)=r_n abr1rn2rn1=bq1+r1(0<r1<b)=r1q2+r2(0<r2<r1)=r2q3+r3(0<r3<r2)=rn1qn+rn(0<rn<rn1)=rnqn+1(a,b)=(b,r1)=(r1,r2)==(rn1,rn)=(rn,0)=rn

公因数一定是最大公因数的因数。

  ( a 1 , a 2 , ⋯   , a n ) = d   \,(a_1,a_2,\cdots,a_n)=d\, (a1,a2,,an)=d的充要条件是   ( a 1 d , a 2 d , ⋯   , a n d ) = 1   \,(\dfrac{a_1}{d},\dfrac{a_2}{d},\cdots,\dfrac{a_n}{d})=1\, (da1,da2,,dan)=1
推论:设   k   \,k\, k是正整数,   l   \,l\, l   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an的一个公因数,且   ( a 1 , a 2 , ⋯   , a n ) = d   \,(a_1,a_2,\cdots,a_n)=d\, (a1,a2,,an)=d,则: ( 1 )    ( k a 1 , k a 2 , ⋯   , k a n ) = k d   ;   ( 2 )    ( a 1 l , a 2 l , ⋯   , a n l ) = d ∣ l ∣ (1)\,\,(ka_1,ka_2,\cdots,ka_n)=kd\,;\,(2)\,\,(\dfrac{a_1}{l},\dfrac{a_2}{l},\cdots,\dfrac{a_n}{l})=\dfrac{d}{\left| l \right |} (1)(ka1,ka2,,kan)=kd;(2)(la1,la2,,lan)=ld

对任意整数   k   \,k\, k,有   ( a , b ) = ( a , b + k a )   \,(a,b)=(a,b+ka)\, (a,b)=(a,b+ka)

  ( a 1 , a 2 , a 3 , ⋯   , a n ) = ( ( a 1 , ⋯   , a r ) , ( a r + 1 , ⋯   , a n ) )    ( 1 ≤ r ≤ n − 1 )   \,(a_1,a_2,a_3,\cdots,a_n)=((a_1,\cdots,a_r),(a_{r+1},\cdots,a_n)) \,\,( 1 \le r \le n-1)\, (a1,a2,a3,,an)=((a1,,ar),(ar+1,,an))(1rn1)
推论:(1) ( a 1 , a 2 ) ( b 1 , b 2 ) = ( a 1 b 1 , a 1 b 2 , a 2 b 1 , a 2 b 2 )   ,   一 般 地 , 有 : ( a 1 , ⋯   , a r ) ( b 1 , ⋯   , b s ) = ( a 1 b 1 , ⋯   , a 1 b s , ⋯   , a r b 1 , ⋯   , a r b s ) (a_1,a_2)(b_1,b_2)=(a_1b_1,a_1b_2,a_2b_1,a_2b_2)\,,\,一般地,有:(a_1,\cdots,a_r)(b_1,\cdots,b_s)=(a_1b_1,\cdots,a_1b_s,\cdots,a_rb_1,\cdots,a_rb_s) (a1,a2)(b1,b2)=(a1b1,a1b2,a2b1,a2b2),(a1,,ar)(b1,,bs)=(a1b1,,a1bs,,arb1,,arbs)
(2) ( a , b , c ) ( a b , b c , c a ) = ( a , b ) ( b , c ) ( c , a ) (a,b,c)(ab,bc,ca)=(a,b)(b,c)(c,a) (a,b,c)(ab,bc,ca)=(a,b)(b,c)(c,a)

对任意两个正整数   a , b   \,a,b\, a,b,用欧几里得算法: a = b q 1 + r 1 , b = r 1 q 2 + r 2 , r 1 = r 2 q 3 + r 3 , ⋯   , r k − 1 = r k q k + 1 + r k + 1 , ⋯   , r n − 1 = r n q n + 1   ,   可 得 : Q k a − P k b = ( − 1 ) k − 1 r k    ( k = 1 , ⋯   , n )   ,   其 中   ,   { P 0 = 1   ,   P 1 = q 1   ,   P k = q k P k − 1 + P k − 2 Q 0 = 0   ,   Q 1 = 1   ,   Q k = q k Q k − 1 + Q k − 2    ( k = 2 , ⋯   , n ) a=bq_1+r_1,b=r_1q_2+r_2,r_1=r_2q_3+r_3,\cdots,r_{k-1}=r_kq_{k+1}+r_{k+1},\cdots,r_{n-1}=r_nq_{n+1}\,,\,可得:Q_ka-P_kb=(-1)^{k-1}r_k\,\,(k=1,\cdots,n)\,,\,其中\,,\,\begin{cases}& P_0=1\,,\,P_1=q_1\,,\,P_k=q_kP_{k-1}+P_{k-2} \\ & Q_0=0\,,\,Q_1=1\,,\,Q_k=q_kQ_{k-1}+Q_{k-2}\end{cases} \,\,(k=2,\cdots,n) a=bq1+r1,b=r1q2+r2,r1=r2q3+r3,,rk1=rkqk+1+rk+1,,rn1=rnqn+1,QkaPkb=(1)k1rk(k=1,,n),,{P0=1,P1=q1,Pk=qkPk1+Pk2Q0=0,Q1=1,Qk=qkQk1+Qk2(k=2,,n)
该定理可用于求解乘法逆元,可参考另一篇博文:整数a关于模m的乘法逆元

证 : 数 学 归 纳 法 。 当   k = 1   时 , 显 然 成 立 ; 当   k = 2   时 , ( − 1 ) 2 − 1 r 2 = − ( b − r 1 q 2 ) = − b + q 2 ( a − b q 1 ) = q 2 a − ( q 2 q 1 + 1 ) b = Q 2 a − P 2 b   ,   也 成 立 ; 假 如 对 于 不 超 过 正 整 数   k   ( k ≥ 2 )   的 正 整 数 都 成 立 , 则 : ( − 1 ) k r k + 1 = ( − 1 ) k ( r k − 1 − r k q k + 1 ) = ( − 1 ) k − 2 r k − 1 + ( − 1 ) k − 1 r k q k + 1 = ( Q k − 1 a − P k − 1 b ) + ( Q k a − P k b ) q k + 1 = ( q k + 1 Q k + Q k − 1 ) a − ( q k + 1 P k + P k − 1 ) b = Q k + 1 a − P k + 1 b   ,   因 此 , 由 第 二 数 学 归 纳 法 知 , 结 论 成 立 。 证:数学归纳法。当\,k=1\,时,显然成立;当\,k=2\,时,(-1)^{2-1}r_2=-(b-r_1q_2)=-b+q_2(a-bq_1)=q_2a-(q_2q_1+1)b=Q_2a-P_2b\,,\,也成立;假如对于不超过正整数\,k\,(k \ge 2)\,的正整数都成立,则:(-1)^kr_{k+1}=(-1)^k(r_{k-1}-r_kq_{k+1})=(-1)^{k-2}r_{k-1}+(-1)^{k-1}r_kq_{k+1}=(Q_{k-1}a-P_{k-1}b)+(Q_ka-P_kb)q_{k+1}=(q_{k+1}Q_k+Q_{k-1})a-(q_{k+1}P_k+P_{k-1})b=Q_{k+1}a-P_{k+1}b\,,\,因此,由第二数学归纳法知,结论成立。 k=1k=2(1)21r2=(br1q2)=b+q2(abq1)=q2a(q2q1+1)b=Q2aP2b,k(k2)(1)krk+1=(1)k(rk1rkqk+1)=(1)k2rk1+(1)k1rkqk+1=(Qk1aPk1b)+(QkaPkb)qk+1=(qk+1Qk+Qk1)a(qk+1Pk+Pk1)b=Qk+1aPk+1b,

(裴(pei)蜀恒等式) 若   a , b   \,a,b\, a,b是任意两个不全为零的整数,则存在两个整数   s , t   \,s,t\, s,t,使得:   a s + b t = ( a , b )   \,as+bt=(a,b)\, as+bt=(a,b)
推论1 :   ( a , b ) = 1   \,(a,b)=1\, (a,b)=1的充要条件是,存在两个整数   u   \,u\, u   v   \,v\, v,使得:   u a + v b = 1   \,ua+vb=1\, ua+vb=1
推论2 :若   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an   n   \,n\, n个不全为零的整数,那么存在   n   \,n\, n个整数   k 1 , k 2 , ⋯   , k n   \,k_1,k_2,\cdots,k_n\, k1,k2,,kn,使得   k 1 a 1 + k 2 a 2 + ⋯ + k n a n = ( a 1 , a 2 , ⋯   , a n )   \,k_1a_1+k_2a_2+\cdots+k_na_n=(a_1,a_2,\cdots,a_n)\, k1a1+k2a2++knan=(a1,a2,,an)

Note : 裴 蜀 恒 等 式   ( a , b ) = u a + v b   裴蜀恒等式\,(a,b)=ua+vb\, (a,b)=ua+vb   u , v   \,u,v\, u,v不是唯一确定的。事实上,由   ( a , b ) = u a + v b = ( u + k b ) a + ( v − k a ) b   ( k ∈ Z )   \,(a,b)=ua+vb=(u+kb)a+(v-ka)b\,(k \in Z)\, (a,b)=ua+vb=(u+kb)a+(vka)b(kZ)可知,总可以假定   u   \,u\, u满足   0 < u ≤ b   \,0 \lt u \le b\, 0<ub。由于   0 < ( a , b ) ≤ a   \,0 \lt (a,b) \le a\, 0<(a,b)a,所以   0 ≤ − v b = u a − ( a , b ) < b a   \,0 \le -vb=ua-(a,b) \lt ba\, 0vb=ua(a,b)<ba,于是   0 ≤ − v < a   \,0 \le -v \lt a\, 0v<a,将   − v   \,-v\, v改记为   v   \,v\, v,即得:   ( a , b ) = u a − v b   ( 0 < u ≤ b   ,   0 ≤ v < a )   \,(a,b)=ua-vb\,(0 \lt u \le b\,,\, 0 \le v \lt a)\, (a,b)=uavb(0<ub,0v<a)

  a , b , c   \,a,b,c\, a,b,c是三个整数,且   ( a , c ) = 1   \,(a,c)=1\, (a,c)=1,则   ( a b , c ) = ( b , c )   \,(ab,c)=(b,c)\, (ab,c)=(b,c)
推论1:若   ( a , c ) = 1   ,   c ∣ a b   , 则   c ∣ b   \,(a,c)=1\,,\,c \mid ab\,,则\,c \mid b\, (a,c)=1,cab,cb
推论2:若   a ∣ n   ,   b ∣ n   ,   ( a , b ) = 1   , 那 么   a b ∣ n   \,a \mid n\,,\,b \mid n\,,\,(a,b)=1\,,那么\,ab \mid n\, an,bn,(a,b)=1,abn
推论3:若在整数   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an   b 1 , b 2 , ⋯   , b n   \,b_1,b_2,\cdots,b_n\, b1,b2,,bn中各取一数   a i   \,a_i\, ai   b j   \,b_j\, bj,都有   ( a i , b j ) = 1   \,(a_i,b_j)=1\, (ai,bj)=1,则   ( ∏ i = 1 n a i   ,   ∏ j = 1 m b j ) = 1   \,\begin{aligned}(\prod_{i=1}^na_i\,,\,\prod_{j=1}^mb_j)=1\end{aligned}\, (i=1nai,j=1mbj)=1,特别地,当   ( a , b ) = 1   \,(a,b)=1\, (a,b)=1   n , m   \,n,m\, n,m为任意正整数时,   ( a n , b m ) = 1   \,(a^n,b^m)=1\, (an,bm)=1

  p   \,p\, p是一质数,   a   \,a\, a是任一整数,则   p ∣ a   \,p \mid a\, pa   ( p , a ) = 1   \,(p,a)=1\, (p,a)=1

例题

  •   n ≥ m > 0   \,n \ge m \gt 0\, nm>0,证明:   ( m , n ) n C n m   \,\dfrac{(m,n)}{n}C_n^m\, n(m,n)Cnm是整数
    提 示 : C n m = n m C n − 1 m − 1   提示:C_n^m=\dfrac{n}{m}C_{n-1}^{m-1}\, Cnm=mnCn1m1

Note : 组合数结论:   C n m = n n − m C n − 1 m   ,   C n m = n − m + 1 m C n m − 1   ,   C n m = n m C n − 1 m − 1   \,C_n^m=\dfrac{n}{n-m}C_{n-1}^m\,,\,C_n^m=\dfrac{n-m+1}{m}C_n^{m-1}\,,\,C_n^m=\dfrac{n}{m}C_{n-1}^{m-1}\, Cnm=nmnCn1m,Cnm=mnm+1Cnm1,Cnm=mnCn1m1很常用

  •   n   \,n\, n是正整数,求   ( C 2 n 1 , C 2 n 3 , ⋯   , C 2 n 2 n − 1 )   \,(C_{2n}^1,C_{2n}^3,\cdots,C_{2n}^{2n-1})\, (C2n1,C2n3,,C2n2n1)
    提 示 : 设   d = ( C 2 n 1 , C 2 n 3 , ⋯   , C 2 n 2 n − 1 )   , 由   C 2 n 1 + C 2 n 3 + ⋯ + C 2 n 2 n − 1 = 2 2 n − 1   知   d ∣ 2 2 n − 1   , 设   2 k ∣ n   并 且   2 k + 1 ∤ n   , 由   2 k + 1 ∣ C 2 n 1   及   2 k + 1 ∣ 2 n i C 2 n − 1 i − 1   ( i = 3 , 5 , ⋯   , 2 n − 1 )   , 得   d = 2 k + 1 提示:设\,d=(C_{2n}^1,C_{2n}^3,\cdots,C_{2n}^{2n-1})\,,由\,C_{2n}^1+C_{2n}^3+\cdots+C_{2n}^{2n-1}=2^{2n-1}\,知\,d \mid 2^{2n-1}\,,设\,2^k \mid n\,并且\,2^{k+1} \nmid n\,,由\,2^{k+1} \mid C_{2n}^1\,及\,2^{k+1} \mid \dfrac{2n}{i}C_{2n-1}^{i-1}\,(i=3,5,\cdots,2n-1)\,,得\,d=2^{k+1} d=(C2n1,C2n3,,C2n2n1),C2n1+C2n3++C2n2n1=22n1d22n1,2kn2k+1n,2k+1C2n12k+1i2nC2n1i1(i=3,5,,2n1),d=2k+1
  •   a , m , n   \,a,m,n\, a,m,n是正整数,   m ≠ n   \,m \ne n\, m=n,试证:   ( a 2 m + 1 , a 2 n + 1 ) = 1   或   2   \,(a^{2^m+1},a^{2^n+1})=1\,或\,2\, (a2m+1,a2n+1)=12
    提 示 : 由   m ≠ n   ,   不 妨 设   m > n   ,   且   m = n + r   ( r ≥ 1 )   ,   则   a 2 m − 1 = a 2 n + r − 1 = ( a 2 n ) 2 r − 1 = ( a 2 n + 1 ) M   ( M   是 正 整 数 )   ,   即   a 2 m + 1 = ( a 2 n + 1 ) M + 2 。 则 : ( a 2 m + 1 , a 2 n + 1 ) = ( a 2 n + 1 , 2 ) = { 1 ( a   是 偶 数 ) 2 ( a   是 奇 数 )   。 提示:由\,m \ne n\,,\,不妨设\,m \gt n\,,\,且\,m=n+r\,(r \ge 1)\,,\,则\,a^{2^m}-1=a^{2^{n+r}}-1=(a^{2^n})^{2^r}-1=(a^{2^n}+1)M\,(M\,是正整数)\,,\,即\,a^{2^m}+1=(a^{2^n}+1)M+2。则:(a^{2^m}+1,a^{2^n}+1)=(a^{2^n}+1,2)=\begin{cases}1 \quad (a\,是偶数) \\ 2 \quad (a\,是奇数)\end{cases}\,。 m=n,m>n,m=n+r(r1),a2m1=a2n+r1=(a2n)2r1=(a2n+1)M(M),a2m+1=(a2n+1)M+2(a2m+1,a2n+1)=(a2n+1,2)={1(a)2(a)
  •   a , m , n   \,a,m,n\, a,m,n是正整数,试证: ( a m − 1 , a n − 1 ) = a ( m , n ) − 1 (a^m-1,a^n-1)=a^{(m,n)}-1 (am1,an1)=a(m,n)1
    提 示 : 设   m > n   ,   m = n q 1 + r 1   ,   n = r 1 q 2 + r 2   ,   r 1 = r 2 q 3 + r 3   ,   ⋯   ,   r n − 2 = r n − 1 q n + r n   ,   r n − 1 = r n q n + 1   ,   则 有 : a m − 1 = a n q 1 + r 1 − 1 = a r 1 ( a n q 1 − 1 ) + ( a r 1 − 1 ) = ( a n − 1 ) N + ( a r 1 − 1 )   ,   N   是 正 整 数 , 有 : ( a m − 1 , 2 n − 1 ) = ( a n − 1 , a r 1 − 1 ) , 以 此 类 推 , 得 : ( a m − 1 , a n − 1 ) = ( a n − 1 , a r 1 − 1 ) = ( a r 1 − 1 , a r 2 − 1 ) = ⋯ = ( a r n − 1 − 1 , a r n − 1 ) = a r n − 1 = a ( m , n ) − 1 提示:设\,m \gt n\,,\,m=nq_1+r_1\,,\,n=r_1q_2+r_2\,,\,r_1=r_2q_3+r_3\,,\,\cdots\,,\,r_{n-2}=r_{n-1}q_n+r_n\,,\,r_{n-1}=r_nq_{n+1}\,,\,则有:a^m-1=a^{nq_1+r_1}-1=a^{r_1}(a^{nq_1}-1)+(a^{r_1}-1)=(a^n-1)N+(a^{r_1}-1)\,,\,N\,是正整数,有:(a^m-1,2^n-1)=(a^n-1,a^{r_1}-1),以此类推,得:(a^m-1,a^n-1)=(a^n-1,a^{r_1}-1)=(a^{r_1}-1,a^{r_2}-1)=\cdots=(a^{r_{n-1}}-1,a^{r_n}-1)=a^{r_n}-1=a^{(m,n)}-1 m>n,m=nq1+r1,n=r1q2+r2,r1=r2q3+r3,,rn2=rn1qn+rn,rn1=rnqn+1,am1=anq1+r11=ar1(anq11)+(ar11)=(an1)N+(ar11),N(am1,2n1)=(an1,ar11)(am1,an1)=(an1,ar11)=(ar11,ar21)==(arn11,arn1)=arn1=a(m,n)1
  • 已知   m > 0   ,   n > 0   \,m \gt 0\,,\,n \gt 0\, m>0,n>0,且   m   \,m\, m是奇数,试证:   ( 2 m − 1 , 2 n + 1 ) = 1   \,(2^m-1,2^n+1)=1\, (2m1,2n+1)=1
    提 示 : ( 1 )   注 意 到 :   若   ( a 1 , a ) = a 1   ,   ( b 1 , b ) = b 1   ,   ( a , b ) = 1   ,   则   ( a 1 , b 1 ) = 1    ( 设   ( a 1 , b 1 ) = d   ,   则   d ∣ a   ,   d ∣ b   , 则   d ∣ ( a , b )   ,   而   ( a , b ) = 1   ,   则   d = 1   ) ( 2 )   于 是 : 由   ( 2 m n − 1 , 2 m n + 1 ) = ( 2 m n − 1 , 2 ) = 1   ,   且   2 m − 1 ∣ 2 m n − 1   ,   2 n + 1 ∣ ( 2 n ) m + 1 = 2 m n + 1   ,   因 此 命 题 成 立 。 提示:(1) \,注意到:\,若\,(a_1,a)=a_1\,,\,(b_1,b)=b_1\,,\,(a,b)=1\,,\,则\,(a_1,b_1)=1\,\,(设\,(a_1,b_1)=d\,,\,则\,d \mid a\,,\,d \mid b \,,则\,d \mid (a,b)\,,\,而\,(a,b)=1\,,\,则\,d=1\,) \\ (2)\,于是:由\,(2^{mn}-1,2^{mn}+1)=(2^{mn}-1,2)=1\,,\,且\,2^m-1 \mid 2^{mn}-1\,,\,2^n+1 \mid (2^n)^m+1=2^{mn}+1\,,\,因此命题成立。 (1)(a1,a)=a1,(b1,b)=b1,(a,b)=1,(a1,b1)=1((a1,b1)=d,da,db,d(a,b),(a,b)=1,d=1)(2)(2mn1,2mn+1)=(2mn1,2)=1,2m12mn1,2n+1(2n)m+1=2mn+1,
  •   u , v   \,u,v\, u,v是互质的正奇数,试证: ( 2 u + 1 , 2 v + 1 ) = 3 (2^u+1,2^v+1)=3 (2u+1,2v+1)=3
    提 示 : 可 证   ( 4 u − 1 , 4 v − 1 ) = 4 ( u , v ) − 1 = 3 , 而   2 u + 1 ∣ 4 u − 1   ,   2 v + 1 ∣ 4 v − 1   ,   所 以   ( 2 u + 1 , 2 v + 1 ) ∣ ( 4 u − 1 , 4 v − 1 ) = 3   ,   又 因 为   u , v   为 正 奇 数 时 , 有   3 = 2 + 1 ∣ 2 u + 1   ,   3 = 2 + 1 ∣ 2 v + 1   ,   又 得   3 ∣ ( 2 u + 1 , 2 v + 1 )   提示:可证\,(4^u-1,4^v-1)=4^{(u,v)}-1=3,而\,2^u+1 \mid 4^u-1\,,\,2^v+1 \mid 4^v-1\,,\,所以\,(2^u+1,2^v+1) \mid (4^u-1,4^v-1)=3\,,\,又因为\,u,v\,为正奇数时,有\,3=2+1 \mid 2^u+1\,,\,3=2+1 \mid 2^v+1\,,\,又得\,3 \mid (2^u+1,2^v+1)\, (4u1,4v1)=4(u,v)1=32u+14u1,2v+14v1,(2u+1,2v+1)(4u1,4v1)=3,u,v3=2+12u+1,3=2+12v+1,3(2u+1,2v+1)
  •   a , b , m , n   \,a,b,m,n\, a,b,m,n都是自然数,   a > 1   \,a \gt 1\, a>1且与   b   \,b\, b互质,   a m + b m ∣ a n + b n   \,a^m+b^m \mid a^n+b^n\, am+bman+bn。试证:   m ∣ n   \,m \mid n\, mn
    证 : 设   n = 2 q m + r   ,   0 ≤ r < 2 m   ,   由 于 : a n + b n − b n − m ( a m + b m ) = a m ( a n − m − b n − m )   ,   则   a m + b m ∣ a n − m + b n − m   ,   又 由   a n − m − b n − m + b n − 2 m ( a m + b m ) = a m ( a n − 2 m + b n − 2 m )   , 得   a m + b m ∣ a n − 2 m + b n − 2 m   , 继 续 下 去 , 直 至 :   a m + b m ∣ a r + b r   ,   因 此 ,   r ≥ m   ,   相 似 地 , 有   a m + b m ∣ a r − m − b r − m   , 但   0 ≤ r − m < m   , 所 以   r = m   , 于 是   n = ( 2 q + 1 ) m   ,   m ∣ n   证:设\,n=2qm+r\,,\,0 \le r \lt 2m\,,\,由于:a^n+b^n-b^{n-m}(a^m+b^m)=a^m(a^{n-m}-b^{n-m})\,,\,则\,a^m+b^m \mid a^{n-m}+b^{n-m}\,,\,又由\,a^{n-m}-b^{n-m}+b^{n-2m}(a^m+b^m)=a^m(a^{n-2m}+b^{n-2m})\,,得\,a^m+b^m \mid a^{n-2m}+b^{n-2m}\,,继续下去,直至:\,a^m+b^m \mid a^r+b^r\,,\,因此,\,r \ge m\,,\,相似地,有\,a^m+b^m \mid a^{r-m}-b^{r-m}\,,但\,0 \le r-m \lt m\,,所以\,r=m\,,于是\,n=(2q+1)m\,,\,m \mid n\, n=2qm+r,0r<2m,an+bnbnm(am+bm)=am(anmbnm),am+bmanm+bnm,anmbnm+bn2m(am+bm)=am(an2m+bn2m),am+bman2m+bn2m,am+bmar+br,,rm,am+bmarmbrm,0rm<m,r=m,n=(2q+1)m,mn
  •   a , b   \,a,b\, a,b是整数,试证:   11 ∣ ( a 2 + 5 b 2 )   \,11 \mid (a^2+5b^2)\, 11(a2+5b2)的充要条件是   11 ∣ a   且   11 ∣ b   \,11 \mid a\,且\,11 \mid b\, 11a11b
    证 : 充 分 性 显 然 , 用 反 证 法 证 必 要 性 。 若   11 ∤ a   , 则 由   11 ∣ ( a 2 + 5 b 2 )   , 推 出   11 ∤ b   , 又   11   为 质 数 , 则   ( 11 , b ) = 1   , 则 存 在 整 数   s , t   , 使 得   11 s + b t = 1   , 由 此 得   t 2 ( a 2 + 5 b 2 ) = ( a t ) 2 + 5 ( b t ) 2 = ( a t ) 2 + 5 + 5 ( b t + 1 ) ( b t − 1 ) = ( a t ) 2 + 5 − 55 ( b t + 1 ) s   , 又   11 ∣ t 2 ( a 2 + 5 b 2 )   ,   11 ∣ 55   , 故   11 ∣ [ ( a t ) 2 + 5 ]   。 又   a t = 11 q + r   ( 0 ≤ r < 11 )   , 即   ( a t ) 2 + 5 = 11 ( 11 q 2 + 2 q r ) + r 2 + 5   , 但 当   r = 0 , 1 , 2 , ⋯   , 10   时 ,   11 ∤ ( r 2 + 5 )   。 因 此   11 ∣ a   , 从 而   11 ∣ b   证:充分性显然,用反证法证必要性。若\,11 \nmid a\,,则由\,11 \mid (a^2+5b^2)\,,推出\,11 \nmid b\,,又\,11\,为质数,则\,(11,b)=1\,,则存在整数\,s,t\,,使得\,11s+bt=1\,,由此得\,t^2(a^2+5b^2)=(at)^2+5(bt)^2=(at)^2+5+5(bt+1)(bt-1)=(at)^2+5-55(bt+1)s\,,又\,11 \mid t^2(a^2+5b^2)\,,\,11 \mid 55\,,故\,11 \mid \left [(at)^2+5 \right]\,。又\,at=11q+r\,(0 \le r \lt 11)\,,即\,(at)^2+5=11(11q^2+2qr)+r^2+5\,,但当\,r=0,1,2,\cdots,10\,时,\,11 \nmid (r^2+5)\,。因此\,11 \mid a\,,从而\,11 \mid b\, 11a,11(a2+5b2),11b,11,(11,b)=1,s,t,使11s+bt=1,t2(a2+5b2)=(at)2+5(bt)2=(at)2+5+5(bt+1)(bt1)=(at)2+555(bt+1)s,11t2(a2+5b2),1155,11[(at)2+5]at=11q+r(0r<11),(at)2+5=11(11q2+2qr)+r2+5,r=0,1,2,,10,11(r2+5)11a,11b
  •   a , b   \,a,b\, a,b是整数,试证:   13 ∣ ( a 2 − 7 b 2 )   \,13 \mid (a^2-7b^2)\, 13(a27b2)的充要条件是   13 ∣ a   \,13 \mid a\, 13a   13 ∣ b   \,13 \mid b\, 13b
    提 示 : 参 考 上 一 题 的 解 题 思 想 提示:参考上一题的解题思想
  •   a , b   \,a,b\, a,b是整数,试证:   3 ∣ ( a 2 + b 2 )   \,3 \mid (a^2+b^2)\, 3(a2+b2)的充要条件是   3 ∣ a   \,3 \mid a\, 3a   3 ∣ b   \,3 \mid b\, 3b
  •   m , n   \,m,n\, m,n是正整数,且   ( m , n ) = 1   \,(m,n)=1\, (m,n)=1,试证:   m !   n ! ∣ ( m + n − 1 ) !   \,m!\,n! \mid (m+n-1)!\, m!n!(m+n1)!
    提 示 : C m + n − 1 n = ( m + n − 1 ) ! ( m − 1 ) !   n !   ,   C m + n − 1 m = ( m + n − 1 ) ! ( n − 1 ) !   m !   都 是 整 数   ,   且 有 : n C m + n − 1 n = m C m + n − 1 m   ,   C n m − 1 = m n − m + 1 C n m   提示:C_{m+n-1}^n=\cfrac{(m+n-1)!}{(m-1)!\,n!}\,,\,C_{m+n-1}^m=\cfrac{(m+n-1)!}{(n-1)!\,m!}\,都是整数\,,\,且有:nC_{m+n-1}^n=mC_{m+n-1}^m\,,\,C_n^{m-1}=\cfrac{m}{n-m+1}C_{n}^{m}\, Cm+n1n=(m1)!n!(m+n1)!,Cm+n1m=(n1)!m!(m+n1)!,nCm+n1n=mCm+n1m,Cnm1=nm+1mCnm
  • 设正整数   a > 1 , b > 1   \,a \gt 1,b \gt 1\, a>1,b>1,且   ( a , b ) = 1   \,(a,b)=1\, (a,b)=1,试证:一定存在正整数   ξ , η   \,\xi,\eta\, ξ,η,使得   a ξ − b η = 1   ( 0 < ξ < b   ,   0 < η < a )   \,a\xi-b\eta=1\,(0 \lt \xi \lt b\,,\,0 \lt \eta \lt a)\, aξbη=1(0<ξ<b,0<η<a)
    提 示 : 由 裴 蜀 恒 等 式 , 有   1 = ( a , b ) = u ′ a + v ′ b = ( u ′ + k b ) a + ( v ′ − k a ) b , 令   u = u ′ + k b   ( k ∈ Z )   , 可 知 一 定 存 在 某 个   k = k 1   , 使 得   0 ≤ u < b   。 但   u ≠ 0   , 否 则 将   u = 0   代 回 裴 蜀 恒 等 式 , 有   1 = ( a , b ) = v b   , 而   b > 1   , 矛 盾 。 同 时 相 似 地 , v ≠ 0 。 于 是 由   0 < u < b   , 得   − 1 < u a − 1 = − v b < b a   , 两 边 同 时 除 以 b , 得 : 0 ≤ − v < a   , 又   v ≠ 0   , 得 :   0 < − v < a   , 令 ξ = u , η = − v   即 可 提示:由裴蜀恒等式,有\,1=(a,b)=u'a+v'b=(u'+kb)a+(v'-ka)b,令\,u=u'+kb\,(k \in Z)\,,可知一定存在某个\,k=k_1\,,使得\,0 \le u \lt b\,。但\,u \ne 0\,,否则将\,u = 0\,代回裴蜀恒等式,有\,1=(a,b)=vb\,,而\,b \gt 1\,,矛盾。同时相似地,v \ne 0。于是由\,0 \lt u \lt b\,,得\,-1 \lt ua-1=-vb \lt ba\,,两边同时除以b,得:0 \le -v \lt a\,,又\,v \ne 0\,,得:\,0 \lt -v \lt a\,,令\xi=u,\eta=-v\,即可 1=(a,b)=ua+vb=(u+kb)a+(vka)bu=u+kb(kZ),k=k1,使0u<bu=0,u=01=(a,b)=vb,b>1,v=00<u<b,1<ua1=vb<ba,b0v<a,v=0,0<v<a,ξ=u,η=v
  • 设有三个正整数   a , b , c   \,a,b,c\, a,b,c,满足   ( a , b , c ) = 1   \,(a,b,c)=1\, (a,b,c)=1,且   1 a + 1 b = 1 c   \,\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\, a1+b1=c1,试证:   a + b , a − c , b − c   \,a+b,a-c,b-c\, a+b,ac,bc都是完全平方数。
    提 示 : 由   1 a + 1 b = 1 c   , 得   ( a + b ) c = a b   , 则   c ∣ a b   , 则   c ∣ a   或   c ∣ b   。 ( 1 )   若   c ∣ a   且   c ∣ b   , 则   1 = ( a , b , c ) = ( ( a , c ) , b ) = ( c , b ) = c   则   a + b = a b   , 则   a = b b − 1   为 整 数 , 则   b − 1 = ( b − 1 , b ) = ( b , − 1 ) = ( b , 1 ) = 1   , 则   b = 2   , 从 而   a = 2   , 验 证 可 知 命 题 成 立 。 ( 2 )   若   ( c , a ) = 1   且   c ∣ b   , 设   b = k c   , 代 入   ( a + b ) c = a b   中 , ⇒   a + k c = a k   , ⇒   a = k ( a − c )   ⇒   a − c = ( a − c , a ) = ( a , − c ) = ( a , c ) = 1   , 于 是   a = c + 1   , 则   a = k ( a − c ) = k   , 于 是   b = k c = a c   , 验 证   a + b = a + a c = a ( 1 + c ) = ( 1 + c ) 2   ,   a − c = c + 1 − c = 1 2   ,   b − c = a c − c = ( a − 1 ) c = c 2   , 可 知 命 题 成 立 ;   ( 3 )   若   ( c , b ) = 1   且   c ∣ a   , 由 对 称 性 , 可 转 化 为 情 况   ( 2 )   证 明 。 提示:由\,\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\,,得\,(a+b)c=ab\,,则\,c \mid ab\,,则\,c \mid a\,或\,c \mid b\,。(1)\,若\,c \mid a\,且\,c \mid b\,,则\,1=(a,b,c)=((a,c),b)=(c,b)=c\,则\,a+b=ab\,,则\,a=\dfrac{b}{b-1}\,为整数,则\,b-1=(b-1,b)=(b,-1)=(b,1)=1\,,则\,b=2\,,从而\,a=2\,,验证可知命题成立。(2)\,若\,(c,a)=1\,且\,c \mid b\,,设\,b=kc\,,代入\,(a+b)c=ab\,中,\Rightarrow\,a+kc=ak\,,\Rightarrow\,a=k(a-c)\,\Rightarrow\,a-c=(a-c,a)=(a,-c)=(a,c)=1\,,于是\,a=c+1\,,则\,a=k(a-c)=k\,,于是\,b=kc=ac\,,验证\,a+b=a+ac=a(1+c)=(1+c)^2\,,\,a-c=c+1-c=1^2\,,\,b-c=ac-c=(a-1)c=c^2\,,可知命题成立;\,(3)\,若\,(c,b)=1\,且\,c \mid a\,,由对称性,可转化为情况\,(2)\,证明。 a1+b1=c1,(a+b)c=ab,cab,cacb(1)cacb,1=(a,b,c)=((a,c),b)=(c,b)=ca+b=ab,a=b1b,b1=(b1,b)=(b,1)=(b,1)=1,b=2,a=2,(2)(c,a)=1cb,b=kc,(a+b)c=ab,a+kc=ak,a=k(ac)ac=(ac,a)=(a,c)=(a,c)=1,a=c+1,a=k(ac)=k,b=kc=ac,a+b=a+ac=a(1+c)=(1+c)2,ac=c+1c=12,bc=acc=(a1)c=c2,;(3)(c,b)=1ca,(2)
  •   m > n ≥ 1   \,m \gt n \ge 1\, m>n1   a 1 < a 2 < ⋯ a s   \,a_1 \lt a_2 \lt \cdots a_s\, a1<a2<as是不超过   m   \,m\, m且与   n   \,n\, n互质的全体整数,设   S m n = 1 a 1 + 1 a 2 + ⋯ + 1 a s   \,S_m^n=\dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_s}\, Smn=a11+a21++as1,试证:   S m n   \,S_m^n\, Smn不是整数。
    提 示 : 设   k   是   a 2 k ≤ a s   的 最 大 整 数 , P   是   a 1 , a 2 , ⋯   , a s 中 除 去   a 2   以 及   a 2   的 倍 数 后 的 全 体 整 数 的 乘 积 , 于 是 有 : a 2 k P S m n = a 2 k P a 1 + a 2 k − 1 P + ⋯ + P + ⋯ + a 2 k P a s   , 如 果   S m n   是 整 数 , 则 有   a 2 ∣ P   , 但 这 与   P   的 设 定 矛 盾 , 所 以   S m n   不 是 整 数 。 提示:设\,k\,是\,a_2^k \le a_s\,的最大整数,P\,是\,a_1,a_2,\cdots,a_s中除去\,a_2\,以及\,a_2\,的倍数后的全体整数的乘积,于是有:a_2^kPS_m^n={\large a_2^kP \over a_1}+ a_2^{k-1}P +\cdots+P+\cdots+{\large a_2^kP \over a_s}\,,如果\,S_m^n\,是整数,则有\,a_2 \mid P\,,但这与\,P\,的设定矛盾,所以\,S_m^n\,不是整数。 ka2kasPa1,a2,,asa2a2a2kPSmn=a1a2kP+a2k1P++P++asa2kP,Smna2P,PSmn

最小公倍数

定义

  a 1 , a 2 , ⋯   , a n   ( n ≥ 2 )   \,a_1,a_2,\cdots,a_n\,(n \ge 2)\, a1,a2,,an(n2)   n   \,n\, n不等于零的整数,如果   a i ∣ m   ( i = 1 , 2 , ⋯   , n )   \,a_i \mid m\,(i=1,2,\cdots,n)\, aim(i=1,2,,n),则称   m   \,m\, m   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an公倍数   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an的公倍数中最小的正整数,称为   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an最小公倍数,记作   [   a 1 , a 2 , ⋯   , a n   ]   \,[\,a_1,a_2,\cdots,a_n\,]\, [a1,a2,,an]

定理

如果   a 1 , a 2 , ⋯   , a n   ( n ≥ 2 )   \,a_1,a_2,\cdots,a_n\,(n \ge 2)\, a1,a2,,an(n2)   n   \,n\, n个不等于零的整数,则   [   a 1 , a 2 , ⋯   , a n   ] = [   ∣ a 1 ∣ , ∣ a 2 ∣ , ⋯   , ∣ a n ∣   ]   \,[\,a_1,a_2,\cdots,a_n\,]=[\,| a_1 |,|a_2|,\cdots,|a_n|\,]\, [a1,a2,,an]=[a1,a2,,an]

公倍数一定是最小公倍数的倍数

证 : 设   m = [   a 1 , a 2 , ⋯   , a n   ]   , 且   m 1   是   a 1 , a 2 , ⋯   , a n   的 任 一 公 倍 数 。 由 带 余 除 法 , 知   m 1 = m q + r   ( 0 ≤ r < m )   , 因 为   a i ∣ m 1 , a i ∣ m   , 所 以   a i ∣ r   ( i = 1 , 2 , ⋯   , n )   , 即   r   是   a 1 , a 2 , ⋯   , a n   的 公 倍 数 , 而   0 ≤ r < m   , 故   r = 0   , 即   m ∣ m 1   证:设\,m=[\,a_1,a_2,\cdots,a_n\,]\,,且\,m_1\,是\,a_1,a_2,\cdots,a_n\,的任一公倍数。由带余除法,知\,m_1=mq+r\,(0 \le r \lt m)\,,因为\,a_i \mid m_1,a_i \mid m\,,所以\,a_i \mid r\,(i=1,2,\cdots,n)\,,即\,r\,是\,a_1,a_2,\cdots,a_n\,的公倍数,而\,0 \le r \lt m\,,故\,r=0\,,即\,m \mid m_1\, m=[a1,a2,,an],m1a1,a2,,anm1=mq+r(0r<m),aim1,aim,air(i=1,2,,n),ra1,a2,,an0r<m,r=0,mm1

[   a 1 , a 2 , ⋯   , a n   ] = m   [\,a_1,a_2,\cdots,a_n\,]=m\, [a1,a2,,an]=m的充要条件是   ( m a 1 , m a 2 , ⋯   , m a n ) = 1   \,(\dfrac{m}{a_1},\dfrac{m}{a_2},\cdots,\dfrac{m}{a_n})=1\, (a1m,a2m,,anm)=1

证 : ( 1 )   必 要 性 : 反 证 法 。 已 知   [   a 1 , a 2 , ⋯   , a n   ] = m   , 假 设   ( m a 1 , m a 2 , ⋯   , m a n ) = d > 1   , 那 么   d ∣ m a i   ( i = 1 , 2 , ⋯   , n )   , 即   a i ∣ m d   , 则   m   也 是   a 1 , a 2 , ⋯   , a n   的 公 倍 数 , 而   0 < m d < m   , 与   m   是   a 1 , a 2 , ⋯   , a n   的 最 小 公 倍 数 矛 盾 。 ( 2 )   充 分 性 : 反 证 法 。 已 知   ( m a 1 , m a 2 , ⋯   , m a n ) = 1   , 易 知   m   为   a 1 , a 2 , ⋯   , a n   的 公 倍 数 , 假 设   [   a 1 , a 2 , ⋯   , a n   ] = m 1 < m   , 则 有   m 1 ∣ m   , 令   m = m 1 q   ( q > 1 )   , 则   1 = ( m a 1 , m a 2 , ⋯   , m a n ) = ( m 1 q a 1 , m 1 q a 2 , ⋯   , m 1 q a n ) = ( m 1 a 1 , m 1 a 2 , ⋯   , m 1 a n ) ⋅ q ≥ q > 1   , 即   1 > 1   , 矛 盾 。 所 以   q = 1   , 即   m = m 1   证:(1)\,必要性:反证法。已知\,[\,a_1,a_2,\cdots,a_n\,]=m\,,假设\,(\dfrac{m}{a_1},\dfrac{m}{a_2},\cdots,\dfrac{m}{a_n})=d \gt 1\,,那么\,d \mid \dfrac{m}{a_i}\,(i=1,2,\cdots,n)\,,即\,a_i \mid \dfrac{m}{d}\,,则\,m\,也是\,a_1,a_2,\cdots,a_n\,的公倍数,而\,0 \lt \dfrac{m}{d} \lt m\,,与\,m\,是\,a_1,a_2,\cdots,a_n\,的最小公倍数矛盾。(2)\,充分性:反证法。已知\,(\dfrac{m}{a_1},\dfrac{m}{a_2},\cdots,\dfrac{m}{a_n})=1\,,易知\,m\,为\,a_1,a_2,\cdots,a_n\,的公倍数,假设\,[\,a_1,a_2,\cdots,a_n\,]=m_1 \lt m\,,则有\,m_1 \mid m\,,令\,m=m_1q\,(q \gt 1)\,,则\,1=(\dfrac{m}{a_1},\dfrac{m}{a_2},\cdots,\dfrac{m}{a_n})=(\dfrac{m_1q}{a_1},\dfrac{m_1q}{a_2},\cdots,\dfrac{m_1q}{a_n})=(\dfrac{m_1}{a_1},\dfrac{m_1}{a_2},\cdots,\dfrac{m_1}{a_n}) \cdot q \ge q \gt 1\,,即\,1 \gt 1\,,矛盾。所以\,q =1\,,即\,m=m_1\, (1)[a1,a2,,an]=m,(a1m,a2m,,anm)=d>1,daim(i=1,2,,n),aidm,ma1,a2,,an0<dm<m,ma1,a2,,an(2)(a1m,a2m,,anm)=1,ma1,a2,,an[a1,a2,,an]=m1<m,m1m,m=m1q(q>1),1=(a1m,a2m,,anm)=(a1m1q,a2m1q,,anm1q)=(a1m1,a2m1,,anm1)qq>1,1>1,q=1,m=m1

推论:设   k   \,k\, k是正整数,   l   \,l\, l   a 1 , a 2 , ⋯   , a n   \,a_1,a_2,\cdots,a_n\, a1,a2,,an的一个公因数,且   [   a 1 , a 2 , ⋯   , a n   ] = m   \,[\,a_1,a_2,\cdots,a_n\,]=m\, [a1,a2,,an]=m,则: ( 1 )   [   k a 1 , k a 2 , ⋯   , k a n   ] = k m   ;   ( 2 )   [   a 1 l , a 2 l , ⋯   , a n l   ] = m ∣ l ∣ (1)\,[\,ka_1,ka_2,\cdots,ka_n\,]=km\,;\,(2)\,[\,\dfrac{a_1}{l},\dfrac{a_2}{l},\cdots,\dfrac{a_n}{l}\,]=\dfrac{m}{|l|} (1)[ka1,ka2,,kan]=km;(2)[la1,la2,,lan]=lm

  a , b   \,a,b\, a,b是任意两个正整数,则   [   a , b   ] = a b ( a , b )   \,[\,a,b\,]=\dfrac{ab}{(a,b)}\, [a,b]=(a,b)ab

证 : 先 假 定   ( a , b ) = 1   , 并 设   m = [   a , b   ]   , 则   m ∣ a b   。 由   a ∣ m   , 知   m = a s   , 进 而 由   b ∣ m   及   ( a , b ) = 1   , 知   b ∣ s   , 则   s = b t   , 于 是   m = a b t   , 则   a b ∣ m   , 故   m = a b   , 结 论 成 立 。 又 因 为   ( a ( a , b ) , b ( a , b ) ) = 1   , 则   [   a ( a , b ) , b ( a , b )   ] = a b ( a , b ) 2   , 于 是   [   a , b   ] = a b ( a , b )   证:先假定\,(a,b)=1\,,并设\,m=[\,a,b\,]\,,则\,m \mid ab\,。由\,a \mid m\,,知\,m=as\,,进而由\,b \mid m\,及\,(a,b)=1\,,知\,b \mid s\,,则\,s=bt\,,于是\,m=abt\,,则\,ab \mid m\,,故\,m=ab\,,结论成立。又因为\,(\dfrac{a}{(a,b)},\dfrac{b}{(a,b)})=1\,,则\,[\,\dfrac{a}{(a,b)},\dfrac{b}{(a,b)}\,]=\dfrac{ab}{(a,b)^2}\,,于是\,[\,a,b\,]=\dfrac{ab}{(a,b)}\, (a,b)=1,m=[a,b],mabam,m=as,bm(a,b)=1,bs,s=bt,m=abt,abm,m=ab,((a,b)a,(a,b)b)=1,[(a,b)a,(a,b)b]=(a,b)2ab,[a,b]=(a,b)ab

推论:若   n   \,n\, n是正整数,则   [   a n , b n   ] = [   a , b   ] n   \,[\,a^n,b^n\,]=[\,a,b\,]^n\, [an,bn]=[a,b]n

提 示 : 利 用   ( a ( a , b ) , b ( a , b ) ) = 1   以 及   ( a , b ) = 1   , 则   ( a n , b n ) = 1   提示:利用\,(\dfrac{a}{(a,b)},\dfrac{b}{(a,b)})=1\,以及\,(a,b)=1\,,则\,(a^n,b^n)=1\, ((a,b)a,(a,b)b)=1(a,b)=1,(an,bn)=1

  [   a 1 , a 2 , a 3 , ⋯   , a n   ]   \,[\,a_1,a_2,a_3,\cdots,a_n\,]\, [a1,a2,a3,,an]=   [   [   a 1 , ⋯   , a r   ] , [   a r + 1 , ⋯   , a n   ]   ]   ( 1 ≤ r ≤ n − 1 ) \,[\,[\,a_1,\cdots,a_r\,],[\,a_{r+1},\cdots,a_n\,]\,]\,(1 \le r \le n-1) [[a1,,ar],[ar+1,,an]](1rn1)

  p 1 , p 2 , ⋯   , p n   \,p_1,p_2,\cdots,p_n\, p1,p2,,pn是不同的质数,且   p i ∣ m   ( 1 ≤ i ≤ n )   , 则   ∏ i = 1 n p i ∣ m   \,p_i \mid m\,(1 \le i \le n)\,,则\,\begin{aligned}\prod_{i=1}^np_i \mid m\end{aligned}\, pim(1in),i=1npim

例题

  • 设正整数   m > n   \,m \gt n\, m>n,证明:   [   m , n   ] + [   m + 1 , n + 1   ] > 2 m n m − n   \,[\,m,n\,]+[\,m+1,n+1\,] \gt \dfrac{2mn}{\sqrt{m-n}}\, [m,n]+[m+1,n+1]>mn 2mn
    证 : 因 为   ( m , n ) ∣ m − n   ,   ( m + 1 , n + 1 ) ∣ ( m + 1 ) − ( n + 1 ) = m − n   , 并 且   ( m , m + 1 ) = 1   , 则 ( ( m , n ) , ( m + 1 , n + 1 ) ) = ( ( m , m + 1 ) , ( n , n + 1 ) ) = 1   , 则   ( m , n ) ( m + 1 , n + 1 ) ∣ m − n   , 而   m − n > 0   , 则   ( m , n ) ( m + 1 , n + 1 ) ≤ m − n   , 所 以   [   m , n   ] + [   m + 1 , n + 1   ] = m n ( m , n ) + ( m + 1 ) ( n + 1 ) ( m + 1 , n + 1 ) > m n ( 1 ( m , n ) + 1 ( m + 1 , n + 1 ) ) ≥ 2 m n ( m , n ) ( m + 1 , n + 1 ) ≥ 2 m n m − n   证:因为\,(m,n) \mid m-n\,,\,(m+1,n+1) \mid (m+1)-(n+1)=m-n\,,并且\,(m,m+1)=1\,,则((m,n),(m+1,n+1))=((m,m+1),(n,n+1))=1\,,则\,(m,n)(m+1,n+1) \mid m-n\,,而\,m-n \gt 0\,,则\,(m,n)(m+1,n+1) \le m-n\,,所以\,[\,m,n\,]+[\,m+1,n+1\,]=\dfrac{mn}{(m,n)}+\dfrac{(m+1)(n+1)}{(m+1,n+1)} \gt mn(\dfrac{1}{(m,n)}+\dfrac{1}{(m+1,n+1)}) \ge \dfrac{2mn}{\sqrt{(m,n)(m+1,n+1)}} \ge \dfrac{2mn}{\sqrt{m-n}}\, (m,n)mn,(m+1,n+1)(m+1)(n+1)=mn,(m,m+1)=1,((m,n),(m+1,n+1))=((m,m+1),(n,n+1))=1,(m,n)(m+1,n+1)mn,mn>0,(m,n)(m+1,n+1)mn,[m,n]+[m+1,n+1]=(m,n)mn+(m+1,n+1)(m+1)(n+1)>mn((m,n)1+(m+1,n+1)1)(m,n)(m+1,n+1) 2mnmn 2mn

End

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值