初等数论 2.3 剩余类

定理:由同余关系是一种等价关系,对于给定的 m ∈ Z + m\in\Z^+ mZ+,可以通过模 m m m对应 Z \Z Z的分拆.
定义:设 m ∈ Z + m\in\Z^+ mZ+,对每个整数 0 ≤ r ≤ m − 1 0\le r \le m-1 0rm1,称集合 C r = n ∣ n ≡ r ( m o d m ) , n ∈ Z \displaystyle C_r={n\mid n\equiv r\pmod m,n\in\Z} Cr=nnr(modm)nZ为模 m m m的一个剩余类.

C 0 , C 1 , ⋯   , C m − 1 C_0,C_1,\cdots,C_{m-1} C0,C1,,Cm1构成 Z \Z Z的一个分拆.

定义:设 m ∈ Z + m\in\Z^+ mZ+,从模 m m m的每个剩余类中任取一个数 x i ( 0 ≤ i ≤ m − 1 ) \displaystyle x_i(0\le i \le {m-1}) xi(0im1),称集合 { x 0 , x 1 , ⋯   , x m − 1 } \displaystyle \{x_0,x_1,\cdots,x_{m-1}\} {x0,x1,,xm1}为模 m m m的一个完全剩余类(complete residue system).

m m m的完全剩余系有无穷多个.

一些常用的完全剩余系:
1.模 m m m的最小非负完全剩余系: { 0 , 1 , 2 , ⋯   , m − 1 } \displaystyle \{0,1,2,\cdots,m-1\} {0,1,2,,m1}.
2.模 m m m的最小正完全剩余系: { 1 , 2 , ⋯   , m } \displaystyle \{1,2,\cdots,m\} {1,2,,m}.
3.模 m m m的绝对最小完全剩余系: { { − m − 1 2 , ⋯   , − 2 , − 1 , 0 , 1 , 2 , ⋯   , m − 1 2 } m 为 奇 数 { − m 2 + 1 , ⋯   , − 2 , − 1 , 0 , 1 , 2 , ⋯   , m 2 } 或 { − m 2 , ⋯   , − 2 , − 1 , 0 , 1 , 2 , ⋯   , m 2 + 1 } m 为 偶 数 \displaystyle \begin{cases} \{-\dfrac{m-1}{2},\cdots,-2,-1,0,1,2,\cdots,\dfrac{m-1}{2}\} \quad m为奇数 \\ \{-\dfrac{m}{2}+1,\cdots,-2,-1,0,1,2,\cdots,\dfrac{m}{2}\}或\{-\dfrac{m}{2},\cdots,-2,-1,0,1,2,\cdots,\dfrac{m}{2}+1\} \quad m为偶数 \end{cases} {2m1,,2,1,0,1,2,,2m1}m{2m+1,,2,1,0,1,2,,2m}{2m,,2,1,0,1,2,,2m+1}m
定理: m m m个整数构成模 m m m的一个完全剩余系当且仅当它们两两模 m m m不同余.
定理:设 m ∈ Z + , a , b ∈ Z , ( a , m ) = 1 m\in\Z^+,a,b\in\Z,(a,m)=1 mZ+a,bZ(a,m)=1,若 { x 1 , x 2 , ⋯   , x m } \{x_1,x_2,\cdots,x_m\} {x1,x2,,xm}是模 m m m的一个完全剩余系,则 { a x 1 + b , a x 2 + b , ⋯   , a x m + b } \{ax_1+b,ax_2+b,\cdots,ax_m+b\} {ax1+b,ax2+b,,axm+b}也是模 m m m的一个完全剩余系.
定理:设 m 1 , m 2 ∈ Z + , k ∈ Z m_1,m_2\in\Z^+,k\in\Z m1,m2Z+kZ,且 ( k , m 1 ) = 1 (k,m_1)=1 (k,m1)=1.又设 X = { x 1 , x 2 , ⋯   , x m 1 } Y = { y 1 , y 2 , ⋯   , y m 2 } \displaystyle X=\{x_1,x_2,\cdots,x_{m_1}\} \quad Y=\{y_1,y_2,\cdots,y_{m_2}\} X={x1,x2,,xm1}Y={y1,y2,,ym2}分别是模 m 1 m_1 m1与模 m 2 m_2 m2的完全剩余系,则 M = { k x + m 1 y ∣ x ∈ X , y ∈ Y } \displaystyle M=\{kx+m_1y\mid x\in X,y\in Y\} M={kx+m1yxX,yY}是模 m 1 m 2 m_1m_2 m1m2的一个完全剩余系.
推论:若 m 1 , m 2 ∈ Z + m_1,m_2\in\Z^+ m1,m2Z+,且 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,则当 x 1 x_1 x1 x 2 x_2 x2分别通过模 m 1 m_1 m1与模 m 2 m_2 m2的完全剩余时 m 2 x 1 + m 1 x 2 m_2x_1+m_1x_2 m2x1+m1x2通过模 m 1 m 2 m_1m_2 m1m2的完全剩余系.
一般地,设 m i ∈ Z + ( 1 ≤ i ≤ n , n ≥ 2 ) m_i\in\Z^+(1\le i \le n,n\ge 2) miZ+(1in,n2),则当 x i ( 1 ≤ i ≤ n ) x_i(1\le i \le n) xi(1in)通过模 m i m_i mi的完全剩余时 x = x 1 + m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 m 2 ⋯ m n − 1 x n \displaystyle x=x_1+m_1x_2+m_1m_2x_3+\cdots+m_1m_2\cdots m_{n-1}x_n x=x1+m1x2+m1m2x3++m1m2mn1xn通过模 m 1 m 2 ⋯ m n m_1m_2\cdots m_n m1m2mn的完全剩余系.


练习:对于 ∀ m ∈ Z + \forall m\in\Z^+ mZ+,存在无穷多个Fibonacci数 f n f_n fn,使得 m ∣ f n m\mid f_n mfn.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值