初等数论 课堂笔记 第三章 -- 剩余类,剩余类环,完全剩余系

吴正尧老师 初等数论 第三周 关于剩余类,剩余类环,完全剩余系的笔记
摘要由CSDN通过智能技术生成

索引

剩余类, 剩余类环

定义

  1. m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0 r ∈ Z r\in \mathbb{Z} rZ 0 ≤ r ≤ m − 1 0\le r\le m-1 0rm1,则
    K r = { n ∈ Z : n ≡ r (   m o d   m ) } { {K}_{r}}=\left\{ n\in \mathbb{Z}:n\equiv r\left( \bmod m \right) \right\} Kr={ nZ:nr(modm)}
    叫做 m m m的剩余类
  2. { K 0 , K 1 , ⋯   , K m − 1 } \left\{ { {K}_{0}},{ {K}_{1}},\cdots ,{ {K}_{m-1}} \right\} { K0,K1,,Km1}构成 m m m的剩余类环(环:加减乘封闭),写为 Z / m Z = { 0 , 1 , ⋯   , m − 1 } \mathbb{Z}/m\mathbb{Z}=\left\{ 0,1,\cdots ,m-1 \right\} Z/mZ={ 0,1,,m1}。环上的加法和乘法如下定义:
    K a + K b = K c   若   a + b ≡ c (   m o d   m ) { {K}_{a}}+{ {K}_{b}}={ {K}_{c}}\text{ }若\text{ }a+b\equiv c\left( \bmod m \right) Ka+Kb=Kc  a+bc(modm)
    K a ⋅ K b = K c   若   a b ≡ c (   m o d   m ) { {K}_{a}}\centerdot { {K}_{b}}={ {K}_{c}}\text{ }若\text{ }ab\equiv c\left( \bmod m \right) KaKb=Kc  abc(modm)

例子

  1. { 0 ‾ , 1 ‾ , 2 ‾ , 3 ‾ } \left\{ \overline{0},\overline{1},\overline{2},\overline{3} \right\} { 0,1,2,3}是模4的剩余类环,在 Z / 4 Z \mathbb{Z}/4\mathbb{Z} Z/4Z中, 2 ‾ × 2 ‾ = 0 ‾ \overline{2}\times \overline{2}=\overline{0} 2×2=0

  2. p p p是素数,则模 p p p的剩余类环成为一个有限域(加减乘除封闭),写作 F p = Z / p Z { {\mathbb{F}}_{p}}=\mathbb{Z}/p\mathbb{Z} Fp=Z/pZ
    例如,在 F 7 = { 0 ‾ , 1 ‾ , 2 ‾ , 3 ‾ , 4 ‾ , 5 ‾ , 6 ‾ } { {\mathbb{F}}_{7}}=\left\{ \overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6} \right\} F7={ 0,1,2,3,4,5,6}中,由于
    2 × 4 = 8 ≡ 1 (   m o d   7 ) 3 × 5 = 15 ≡ 1 (   m o d   7 ) 6 × 6 = 36 ≡ 1 (   m o d   7 ) \begin{aligned} & 2\times 4=8\equiv 1\left( \bmod 7 \right) \\ & 3\times 5=15\equiv 1\left( \bmod 7 \right) \\ & 6\times 6=36\equiv 1\left( \bmod 7 \right) \\ \end{aligned} 2×4=81(mod7)3×5=151(mod7)6×6=361(mod7)
    因此有
    2 ‾ × 4 ‾ = 1 ‾   ⇒   1 ‾ 2 ‾ = 4 ‾ 3 ‾ × 5 ‾ = 1 ‾   ⇒   1 ‾ 3 ‾ = 5 ‾ 6 ‾ × 6 ‾ = 1 ‾   ⇒   1 ‾ 6 ‾ = 6 ‾ \begin{aligned} & \overline{2}\times \overline{4}=\overline{1}\text{ }\Rightarrow \text{ }\frac{\overline{1}}{\overline{2}}=\overline{4} \\ & \overline{3}\times \overline{5}=\overline{1}\text{ }\Rightarrow \text{ }\frac{\overline{1}}{\overline{3}}=\overline{5} \\ & \overline{6}\times \overline{6}=\overline{1}\text{ }\Rightarrow \text{ }\frac{\overline{1}}{\overline{6}}=\overline{6} \\ \end{aligned} 2×4=1  21=43×5=1  31=56×6=1  61=6

  3. F 13 = { 0 ‾ ,   1 ‾ ,   ⋯   ,   12 ‾ } { {\mathbb{F}}_{13}}=\left\{ \overline{0},\text{ }\overline{1},\text{ }\cdots ,\text{ }\overline{12} \right\} F13={ 0, 1, , 12}中,不用穷举法求出 1 ‾ 5 ‾ \frac{\overline{1}}{\overline{5}} 51

      令 1 ‾ 5 ‾ = a ‾ \frac{\overline{1}}{\overline{5}}=\overline{a} 51=a,则有
      5 ‾ ⋅ a ‾ = 1 ‾ ⇔ ( 13 k 1 + 5 ) ( 13 k 2 + a ) = 13 k + 1 ⇔ 5 a + 13 ( 13 k 1 k 2 + a k 1 + 5 k 2 − k ) = 1 ,   ∀ k , k 1 , k 2 ∈ Z \begin{aligned} & \text{ }\overline{5}\centerdot \overline{a}=\overline{1} \\ & \Leftrightarrow \left( 13{ {k}_{1}}+5 \right)\left( 13{ {k}_{2}}+a \right)=13k+1 \\ & \Leftrightarrow 5a+13\left( 13{ {k}_{1}}{ {k}_{2}}+a{ {k}_{1}}+5{ {k}_{2}}-k \right)=1,\text{ }\forall k,{ {k}_{1}},{ {k}_{2}}\in \mathbb{Z} \\ \end{aligned}  5a=1(13k1+5)(13k2+a)=13k+15a+13(13k1k2+ak1+5k2k)=1, k,k1,k2Z
    因此求解 a ‾ \overline{a} a等价于求解
    5 a + 13 b = 1 ,   a , b ∈ Z 5a+13b=1,\text{ }a,b \in \mathbb{Z} 5a+13b=1, a,bZ
    (因为一方面 ( a , 13 k 1 k 2 + a k 1 + 5 k 2 − k ) \left( a,13{ {k}_{1}}{ {k}_{2}}+a{ {k}_{1}}+5{ {k}_{2}}-k \right) (a,13k1k2+ak1+5k2k)本身就是 5 a + 13 b = 1 5a+13b=1 5a+13b=1的解;另一方面,由于 13 k 1 k 2 + a k 1 + 5 k 2 − k 13{ {k}_{1}}{ {k}_{2}}+a{ {k}_{1}}+5{ {k}_{2}}-k 13k1k2+ak1+5k2k k k k的系数是 − 1 -1 1,所以对于一个确定的 b b b,总能找到一组系数对 ( k , k 1 , k 2 ) \left( k,{ {k}_{1}},{ {k}_{2}} \right) (k,k1,k2)使得 b = 13 k 1 k 2 + a k 1 + 5 k 2 − k b=13{ {k}_{1}}{ {k}_{2}}+a{ {k}_{1}}+5{ {k}_{2}}-k b=13k1k2+ak1+5k2k
    进行辗转相除法如下。
    13 = 5 × 2 + 3 5 = 3 × 1 + 2 3 = 2 × 1 + 1 \begin{aligned} & 13=5\times 2+3 \\ & 5=3\times 1+2 \\ & 3=2\times 1+1 \\ \end{aligned} 13=5×2+35=3×1+23=2×1+1
    因此有
    P 0 = 1 ,   P 1 = 2 ,   P 2 = 1 × 2 + 1 = 3 ,   P 3 = 1 × 3 + 2 = 5 Q 0 = 0 ,   Q 1 = 1 ,   Q 2 = 1 × 1 + 0 = 1 ,   Q 3 = 1 × 1 + 1 = 2 \begin{aligned} & { {P}_{0}}=1,\text{ }{ {P}_{1}}=2,\text{ }{ {P}_{2}}=1\times 2+1=3,\text{ }{ {P}_{3}}=1\times 3+2=5 \\ & { {Q}_{0}}=0,\text{ }{ {Q}_{1}}=1,\text{ }{ {Q}_{2}}=1\times 1+0=1,\text{ }{ {Q}_{3}}=1\times 1+1=2 \\ \end{aligned} P0=1, P1=2, P2=1×2+1=3, P3=1×3+2=5Q0=0, Q1=1, Q2=1×1+0=1, Q3=1×1+1=2
    因此有特解 ( ( − 1 ) 3 P 3 , ( − 1 ) 2 P 2 ) = ( − 5 , 2 ) \left( { {\left( -1 \right)}^{3}}{ {P}_{3}},{ {\left( -1 \right)}^{2}}{ {P}_{2}} \right)=\left( -5,2 \right) ((1)3P3,(1)2P2)=(5,2),方程的通解为
    { a = − 5 − 13 t b = 2 + 5 t ,   t ∈ Z \left\{ \begin{aligned} & a=-5-13t \\ & b=2+5t \\ \end{aligned} \right.,\text{ }t\in \mathbb{Z} { a=513tb=2+5t, tZ
    Z \mathbb{Z}

  • 5
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值