初等数论 2.6 同余方程(2)

定理:Fermat小定理:设 p p p是素数,若 a ∈ Z + , p ∤ a a\in\Z^+,p\nmid a aZ+pa a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod p ap11(modp).
定理:设 p p p是素数, a ∈ Z + a\in\Z^+ aZ+,则 a p ≡ a ( m o d p ) a^p\equiv a\pmod p apa(modp).
推论:若 p p p是素数, a ∈ Z , p ∤ a a\in\Z,p\nmid a aZpa,则 a p − 2 a^{p-2} ap2 a a a p p p的逆.
推论:设 a , b ∈ Z + a,b\in\Z^+ a,bZ+ p p p是素数, p ∤ a p\nmid a pa,则线性同余方程 a x ≡ b ∤ p ax\equiv b\nmid p axbp的解是满足方程 x ≡ a p − 2 b ( m o d p ) x\equiv a^{p-2}b\pmod p xap2b(modp)的整数 x x x.
定理:(中国剩余定理):设 m 1 , m 2 , ⋯   , m n ∈ Z + m_1,m_2,\cdots,m_n\in\Z^+ m1,m2,,mnZ+,且 ( m i , m j ) = 1 1 ≤ i , j ≤ n i ≠ j (m_i,m_j)=1 \quad 1\le i,j \le n \quad i\neq j (mi,mj)=11i,jni̸=j,则同余方程 x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) ⋮ x ≡ a r ( m o d m r ) x\equiv a_1\pmod {m_1} \\ x\equiv a_2\pmod {m_2} \\ \vdots \\ x\equiv a_r\pmod {m_r} xa1(modm1)xa2(modm2)xar(modmr)的解是 x ≡ ∑ i = 1 n a i M i M i ′ ( m o d M ) \displaystyle x\equiv\sum_{i=1}^{n}{a_iM_iM'_i}\pmod M xi=1naiMiMi(modM)其中 M = [ m 1 , m 2 , ⋯   , m n ] = m 1 m 2 ⋯ m n , M i = M m i ( 1 ≤ i ≤ n ) , M i ′ M=[m_1,m_2,\cdots,m_n]=m_1m_2\cdots m_n,M_i=\dfrac{M}{m_i}(1\le i \le n),M'_i M=[m1,m2,,mn]=m1m2mn,Mi=miM(1in),Mi是满足同余方程 M i x ≡ 1 ( m o d m ) i M_ix\equiv 1\pmod m_i Mix1(modm)i的整数.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值