【计算题】(二)极限

题型一 求函数极限

熟练掌握四则运算法则、因式分解,简单的极限可以配合以下类似应激反应的操作解出或化简:
分式±分式通分、√分子分母乘共轭、|□| e底双侧极限、三角函数 π 2 \frac{\pi}{2} 2π π 4 \frac{\pi}{4} 4π 恒等变换
分子低次 1 x 2 = x 0 x 2 \frac{1}{x^2}=\frac{x^0}{x^2} x21=x2x0 倒代换、 x → − ∞ x \to -\infin x t = − x t=-x t=x 代换、 x − 1 < [ x ] ≤ x x-1<[x]≤x x1<[x]x ( 1 + x ) x − 1 (1+x)^x-1 (1+x)x1 等价于 ln ⁡ ( 1 + ( 1 + x ) x − 1 ) \ln (1+(1+x)^x-1) ln(1+(1+x)x1)

  • 分式±分式通分: lim ⁡ x → 1 ( 1 x − 1 + x − 4 x 3 − 1 ) = lim ⁡ x → 1 x 2 + 2 x − 3 ( x − 1 ) ( x 2 + x + 1 ) = lim ⁡ x → 1 ( x − 1 ) ( x + 3 ) ( x − 1 ) ( x 2 + x + 1 ) = lim ⁡ x → 1 x + 3 x 2 + x + 1 = 4 3 \lim_{x \to 1}(\frac{1}{x-1}+\frac{x-4}{x^3-1}) =\lim_{x \to 1}\frac{x^2+2x-3}{(x-1)(x^2+x+1)} =\lim_{x \to 1}\frac{(x-1)(x+3)}{(x-1)(x^2+x+1)} =\lim_{x \to 1}\frac{x+3}{x^2+x+1}=\frac{4}{3} x1lim(x11+x31x4)=x1lim(x1)(x2+x+1)x2+2x3=x1lim(x1)(x2+x+1)(x1)(x+3)=x1limx2+x+1x+3=34

  • √分子分母乘共轭:
    lim ⁡ x → 2 2 + x − 6 − x x 2 − 3 x + 2 = lim ⁡ x → 2 ( 2 + x − 6 − x ) ( 2 + x + 6 − x ) ( x 2 − 3 x + 2 ) ( 2 + x + 6 − x ) = 1 2 \lim_{x \to 2}\frac{\sqrt{2+x}-\sqrt{6-x}}{x^2-3x+2} =\lim_{x \to 2}\frac{(\sqrt{2+x}-\sqrt{6-x})(\sqrt{2+x}+\sqrt{6-x})}{(x^2-3x+2)(\sqrt{2+x}+\sqrt{6-x})} =\frac{1}{2} x2limx23x+22+x 6x =x2lim(x23x+2)(2+x +6x )(2+x 6x )(2+x +6x )=21

  • |□| e底双侧极限:
    lim ⁡ x → 0 + x 1 + e 1 x = lim ⁡ x → 0 + x lim ⁡ x → 0 + 1 1 + e 1 x = 0 , lim ⁡ x → 0 − x 1 + e 1 x = 0 1 + 0 = 0 \lim_{x \to 0^+}\frac{x}{1+e^\frac{1}{x}} =\lim_{x \to 0^+}x\lim_{x \to 0^+}\frac{1}{1+e^\frac{1}{x}} =0, \lim_{x \to 0^-}\frac{x}{1+e^\frac{1}{x}} =\frac{0}{1+0}=0 x0+lim1+ex1x=x0+limxx0+lim1+ex11=0x0lim1+ex1x=1+00=0

  • 三角函数 π 2 \frac{\pi}{2} 2π π 4 \frac{\pi}{4} 4π 恒等变换
    lim ⁡ x → π 4 t a n ( 2 x ) t a n ( π 4 − x ) = lim ⁡ t → 0 t a n ( π 2 − 2 t ) t a n t = lim ⁡ t → 0 c o t ( 2 t ) t a n t = lim ⁡ t → 0 t a n t t a n 2 t = 1 2 \lim_{x \to \frac{\pi}{4}}tan(2x)tan(\frac{\pi}{4}-x) =\lim_{t \to 0}tan(\frac{\pi}{2}-2t)tant =\lim_{t \to 0}cot(2t)tant =\lim_{t \to 0}\frac{tant}{tan2t}=\frac{1}{2} x4πlimtan(2x)tan(4πx)=t0limtan(2π2t)tant=t0limcot(2t)tant=t0limtan2ttant=21

0 ⋅ ∞ 0·\infin 0 ∞ − ∞ \infin-\infin 不定式极限可用以下方法直接化简:

  • 0 0 、 1 ∞ 、 ∞ 0 0^0、1^\infin、\infin^0 0010 取指数化简
  • 0 ⋅ ∞ 0·\infin 0 取倒数化为 0 / 0 0/0 0/0 ∞ / ∞ \infin/\infin /
  • ∞ − ∞ \infin-\infin 通分、乘共轭或提 x x x 公因子化为 0 / 0 0/0 0/0

0 0 0^0 00 0 / 0 0/0 0/0 ∞ / ∞ \infin/\infin / 不定式极限可用以下方法直接解出:

  • 0 / 0 0/0 0/0麦克劳林公式、等价无穷小解出
  • ∞ / ∞ \infin/\infin /同除最高次、洛必达法则解出
  • 0 / 0 0/0 0/0 麦克劳林公式:
    lim ⁡ x → 0 e x + l n ( 1 − x ) − 1 x − a r c t a n x \lim_{x \to 0}\frac{e^x+ln(1-x)-1}{x-arctanx} x0limxarctanxex+ln(1x)1 = lim ⁡ x → 0 ( 1 + x + x 2 2 + x 3 6 + o ( x 4 ) ) + ( − x − x 2 2 − x 3 3 + o ( x 4 ) ) − 1 x − ( x − x 3 3 + o ( x 3 ) ) = lim ⁡ x → 0 − x 3 6 x 3 3 = − 1 2 =\lim_{x \to 0}\frac{(1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^4))+(-x - \frac{x^2}{2} - \frac{x^3}{3}+o(x^4))-1}{x-(x-\frac{x^3}{3}+o(x^3))}=\lim_{x \to 0}\frac{-\frac{x^3}{6}}{\frac{x^3}{3}} =-\frac{1}{2} =x0limx(x3x3+o(x3))(1+x+2x2+6x3+o(x4))+(x2x23x3+o(x4))1=x0lim3x36x3=21

  • 0 / 0 0/0 0/0 等价无穷小:
    lim ⁡ x → 0 e t a n x − e s i n x ( s i n x ) 3 = lim ⁡ x → 0 ( e t a n x − 1 ) − ( e s i n x − 1 ) ( s i n x ) 3 = lim ⁡ x → 0 t a n x − s i n x x 3 = lim ⁡ x → 0 1 2 x 3 x 3 = 1 2 \lim_{x \to 0}\frac{e^{tanx}-e^{sinx}}{(sinx)^3}=\lim_{x \to 0}\frac{(e^{tanx}-1)-(e^{sinx}-1)}{(sinx)^3}=\lim_{x \to 0}\frac{tanx-sinx}{x^3}=\lim_{x \to 0}\frac{\frac{1}{2}x^3}{x^3}=\frac{1}{2} x0lim(sinx)3etanxesinx=x0lim(sinx)3(etanx1)(esinx1)=x0limx3tanxsinx=x0limx321x3=21

  • ∞ / ∞ \infin/\infin / 同除最高次:
    lim ⁡ x → ∞ ( 4 x + 5 ) 10 ( 3 x − 1 ) 5 ( 2 x + 3 ) 15 = lim ⁡ x → ∞ ( 4 x + 5 ) 10 / x 10 ⋅ ( 3 x − 1 ) 5 / x 5 ( 2 x + 3 ) 15 / x 15 = lim ⁡ x → ∞ ( 4 + 5 x ) 10 ( 3 − 1 x ) 5 ( 2 + 3 x ) 10 = 6 5 \lim_{x \to \infin}\frac{(4x+5)^{10}(3x-1)^5}{(2x+3)^{15}}=\lim_{x \to \infin}\frac{(4x+5)^{10}/x^{10}·(3x-1)^5/x^5}{(2x+3)^{15}/x^{15}}=\lim_{x \to \infin}\frac{(4+\frac{5}{x})^{10}(3-\frac{1}{x})^{5}}{(2+\frac{3}{x})^{10}}=6^5 xlim(2x+3)15(4x+5)10(3x1)5=xlim(2x+3)15/x15(4x+5)10/x10(3x1)5/x5=xlim(2+x3)10(4+x5)10(3x1)5=65

  • ∞ / ∞ \infin/\infin / 洛必达法则:
    lim ⁡ x → 0 + l n t a n 7 x l n t a n 2 x = lim ⁡ x → 0 + l n 7 x l n 2 x = lim ⁡ x → 0 + 7 7 x 2 2 x = 1 \lim_{x \to 0^+}\frac{lntan7x}{lntan2x} =\lim_{x \to 0^+}\frac{ln7x}{ln2x} =\lim_{x \to 0^+}\frac{\frac{7}{7x}}{\frac{2}{2x}} =1 x0+limlntan2xlntan7x=x0+limln2xln7x=x0+lim2x27x7=1

题型二 求数列极限

夹逼定理求累加和:
1.化为统一求和形式,试提出 1 n \frac{1}{n} n1 ,右侧未出现 i n \frac{i}{n} ni则直接夹逼求出
2. 找通项分母中对通项影响最小的因素 — 放缩法
3. 配定积分,夹逼法为极限

求极限 lim ⁡ n → ∞ ( 1 n + 1 + 1 ( n 2 + 1 ) 1 2 + . . . + 1 ( n n + 1 ) 1 n ) \lim_{n \to \infin}(\frac{1}{n+1}+ \frac{1}{(n^2+1)^\frac{1}{2}}+...+\frac{1}{(n^n+1)^\frac{1}{n}} ) limn(n+11+(n2+1)211+...+(nn+1)n11)
解:
原 式 = lim ⁡ n → ∞ ∑ i = 1 n 1 ( n i + 1 ) 1 i = lim ⁡ n → ∞ 1 n ∑ i = 1 n 1 ( 1 + 1 n i ) 1 i , 右 侧 未 出 现 i n 原式 =\lim_{n \to \infin}\sum_{i=1}^{n}\frac{1}{(n^i+1)^\frac{1}{i}} =\lim_{n \to \infin} \frac{1}{n} \sum_{i=1}^{n}\frac{1}{(1+\frac{1}{n^i})^\frac{1}{i}},右侧未出现 \frac{i}{n} =nlimi=1n(ni+1)i11=nlimn1i=1n(1+ni1)i11ni 1 n + 1 ∗ n ≤ [ 1 n + 1 + 1 ( n 2 + 1 ) 1 2 + . . . + 1 ( n n + 1 ) 1 n ≤ [ 1 n + 1 ( n 2 ) 1 2 + . . . + 1 ( n n ) 1 n ] = 1 n ∗ n = 1 \frac{1}{n+1}*n ≤ [\frac{1}{n+1}+ \frac{1}{(n^2+1)^\frac{1}{2}}+...+\frac{1}{(n^n+1)^\frac{1}{n}} ≤ [\frac{1}{n}+ \frac{1}{(n^2)^\frac{1}{2}}+...+\frac{1}{(n^n)^\frac{1}{n}}]=\frac{1}{n}*n=1 n+11n[n+11+(n2+1)211+...+(nn+1)n11[n1+(n2)211+...+(nn)n11]=n1n=1 lim ⁡ n → ∞ n n + 1 = 1 , 夹 逼 定 理 可 知 原 极 限 为 1 \lim_{n \to \infin} \frac{n}{n+1}=1,夹逼定理可知原极限为 1 nlimn+1n=11

求极限 lim ⁡ n → ∞ ( s i n π n n + 1 + s i n 2 π n n + 1 2 . . . + s i n n π n n + 1 n ) \lim_{n \to \infin}(\frac{sin\frac{\pi}{n}}{n+1}+\frac{sin\frac{2\pi}{n}}{n+\frac{1}{2}}...+\frac{sin\frac{n\pi}{n}}{n+\frac{1}{n}} ) limn(n+1sinnπ+n+21sinn2π...+n+n1sinnnπ)

解:

  • 化为统一求和形式
    lim ⁡ n → ∞ ( s i n π n n + 1 + s i n 2 π n n + 1 2 . . . + s i n n π n n + 1 n ) = lim ⁡ n → ∞ ∑ i = 1 n s i n i π n n + 1 i \lim_{n \to \infin}(\frac{sin\frac{\pi}{n}}{n+1}+\frac{sin\frac{2\pi}{n}}{n+\frac{1}{2}}...+\frac{sin\frac{n\pi}{n}}{n+\frac{1}{n}} )=\lim_{n \to \infin}\sum_{i=1}^n \frac{sin\frac{i\pi}{n}}{n+\frac{1}{i}} nlim(n+1sinnπ+n+21sinn2π...+n+n1sinnnπ)=nlimi=1nn+i1sinniπ

  • 找通项分母中对通项影响最小的因子 1 i \frac{1}{i} i1 — 放缩
    放 大 i : 令 1 i 为 0 , ∑ i = 1 n s i n i π n n + 1 i ≤ 1 n ∑ i = 1 n s i n i n π 放大i:令\frac{1}{i}为0, \sum_{i=1}^n \frac{sin\frac{i\pi}{n}}{n+\frac{1}{i}} ≤\frac{1}{n} \sum_{i=1}^n sin\frac{i}{n}\pi ii10i=1nn+i1sinniπn1i=1nsinniπ 缩 小 i : 令 1 i 为 1 , ∑ i = 1 n s i n i π n n + 1 i ≥ 1 n + 1 ∑ i = 1 n s i n i π n = n n + 1 ( 1 n ∑ i = 1 n s i n i n π ) 缩小i:令\frac{1}{i}为1, \sum_{i=1}^n \frac{sin\frac{i\pi}{n}}{n+\frac{1}{i}} ≥\frac{1}{n+1} \sum_{i=1}^n sin\frac{i\pi}{n} =\frac{n}{n+1}(\frac{1}{n} \sum_{i=1}^n sin\frac{i}{n}\pi) ii11i=1nn+i1sinniπn+11i=1nsinniπ=n+1n(n1i=1nsinniπ)

  • 配定积分,夹逼法为极限
    lim ⁡ n → ∞ 1 n ∑ i = 1 n s i n i n π x = ∫ 0 1 s i n ( π x ) d x = 2 π \lim_{n \to \infin}\frac{1}{n} \sum_{i=1}^n sin\frac{i}{n}\pi x = \int_{0}^{1}sin(\pi x) dx = \frac{2}{\pi} nlimn1i=1nsinniπx=01sin(πx)dx=π2 lim ⁡ n → ∞ n n + 1 ( 1 n ∑ i = 1 n s i n i n π ) = ∫ 0 1 s i n ( π x ) d x = 2 π \lim_{n \to \infin}\frac{n}{n+1}(\frac{1}{n} \sum_{i=1}^n sin\frac{i}{n}\pi) = \int_{0}^{1}sin(\pi x) dx = \frac{2}{\pi} nlimn+1n(n1i=1nsinniπ)=01sin(πx)dx=π2

单调有界准则证递推式:
1.求范围 ( x i x_i xi) 2.求极限值 3.证有界(归纳法) 4.证单调(归纳法) 5.极限存在

x 1 = 10 , x n + 1 = 6 + x n , n = 1 , 2 , . . . x_1=10,x_{n+1}=\sqrt{6+x_n},n=1,2,... x1=10,xn+1=6+xn ,n=1,2,...,问数列 { x n } \{x_n\} {xn} 的极限是否存在?若存在,求其值。

解:

  • 求范围 ( x i x_i xi): x 1 = 10 , x n > 0 x_1=10, x_n>0 x1=10,xn>0
  • 求极限值:设数列极限为 A A A,则 lim ⁡ x n + 1 = lim ⁡ 6 + x n , 即 A = 6 + A , 解 出 A = 3 \lim x_{n+1}=\lim \sqrt{6+x_n},即 A=\sqrt{6+A},解出 A=3 limxn+1=lim6+xn A=6+A A=3
  • 证有界(归纳法):
    x 1 = 10 > A , 令 x k > A , 则 x k + 1 = 6 + x k > 6 + A = A , 故 数 列 有 下 界 A x_1=10>A,令 x_k>A,则x_{k+1}=\sqrt{6+x_k}>\sqrt{6+A}=A,故数列有下界A x1=10>Axk>Axk+1=6+xk >6+A =AA
  • 证单调(归纳法):
    x 1 = 10 > x 2 = 4 , 令 x k − 1 > x k , 则 x k − x k + 1 = x k − 6 + x k = x k 2 − x k − 6 x k + 6 + x k , x_1=10>x_2=4,令x_{k-1}>x_k,则x_k-x_{k+1}=x_k-\sqrt{6+x_k}=\frac{x_{k}^2-x_k-6}{x_k+\sqrt{6+x_k}}, x1=10>x2=4xk1>xkxkxk+1=xk6+xk =xk+6+xk xk2xk6 因 x k > 3 , 故 x k − x k + 1 > 0 , 即 x k > x k + 1 , 故 数 列 单 调 递 减 因 x_k>3,故x_k-x_{k+1}>0,即 x_k>x_{k+1},故数列单调递减 xk>3xkxk+1>0xk>xk+1
  • 极限存在:根据单调递减准则可知,数列单调递减有下界,极限存在且极限值为 3 3 3

题型三 极限求参或极限

极限求参数:

  • lim ⁡ f ( x ) g ( x ) = c \lim \frac{f(x)}{g(x)}=c limg(x)f(x)=c lim ⁡ g ( x ) = 0 \lim g(x)=0 limg(x)=0,则 lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0
  • lim ⁡ f ( x ) g ( x ) = c \lim \frac{f(x)}{g(x)}=c limg(x)f(x)=c lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0 c ≠ 0 c≠0 c=0,则 lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0

确定常数 a , b , c a, b, c a,b,c 的值,使 lim ⁡ x → 0 a x − sin ⁡ x ∫ b x ln ⁡ ( 1 + t 3 ) t d t = c ≠ 0 \lim_{x \to 0} \frac{ax-\sin x}{\int_{b}^{x} \frac{ \ln (1+t^3) }{t} dt} = c ≠ 0 x0limbxtln(1+t3)dtaxsinx=c=0

解:
因为 lim ⁡ x → 0 ( a x − sin ⁡ x ) = 0 \lim_{x \to 0} (ax-\sin x) = 0 limx0(axsinx)=0 c ≠ 0 c ≠ 0 c=0,故 lim ⁡ x → 0 ∫ b x ln ⁡ ( 1 + t 3 ) t d t = 0 \lim_{x \to 0} \int_{b}^{x} \frac{ \ln (1+t^3) }{t} dt=0 limx0bxtln(1+t3)dt=0,即 ∫ b 0 ln ⁡ ( 1 + t 3 ) t d t = 0 \int_{b}^{0} \frac{ \ln (1+t^3) }{t} dt=0 b0tln(1+t3)dt=0又因 ln ⁡ ( 1 + t 3 ) t d t ≠ 0 \frac{ \ln (1+t^3) }{t} dt ≠ 0 tln(1+t3)dt=0,所以 b = 0 b=0 b=0

lim ⁡ x → 0 a x − sin ⁡ x ∫ b x ln ⁡ ( 1 + t 3 ) t d t = lim ⁡ x → 0 a − cos ⁡ x ln ⁡ ( 1 + x 3 ) x = lim ⁡ x → 0 a − cos ⁡ x x 2 = c ≠ 0 \lim_{x \to 0} \frac{ax-\sin x}{\int_{b}^{x} \frac{ \ln (1+t^3) }{t} dt} = \lim_{x \to 0} \frac{a-\cos x}{ \frac{ \ln (1+x^3) }{x} } = \lim_{x \to 0} \frac{a-\cos x}{ x^2 }=c ≠ 0 x0limbxtln(1+t3)dtaxsinx=x0limxln(1+x3)acosx=x0limx2acosx=c=0

所以 a = 1 , c = 1 2 a=1,c=\frac{1}{2} a=1c=21

极限求极限:凑目标函数

lim ⁡ x → 0 x − sin ⁡ x + f ( x ) x 4 \lim_{x \to 0} \frac{x - \sin x + f(x)}{x^4} limx0x4xsinx+f(x) 存在,求 lim ⁡ x → 0 x 3 f ( x ) \lim_{x \to 0} \frac{x^3}{f(x)} limx0f(x)x3
解:
lim ⁡ x → 0 x − sin ⁡ x + f ( x ) x 4 = lim ⁡ x → 0 x − sin ⁡ x x 3 + f ( x ) x 3 x = lim ⁡ x → 0 1 6 + f ( x ) x 3 x \lim_{x \to 0} \frac{x - \sin x + f(x)}{x^4} = \lim_{x \to 0} \frac{\frac{x-\sin x}{x^3} +\frac{f(x)}{x^3}}{x} = \lim_{x \to 0} \frac{\frac{1}{6} +\frac{f(x)}{x^3}}{x} x0limx4xsinx+f(x)=x0limxx3xsinx+x3f(x)=x0limx61+x3f(x)

因为 lim ⁡ x = 0 \lim x=0 limx=0,故 lim ⁡ 1 6 + f ( x ) x 3 = 0 \lim \frac{1}{6} +\frac{f(x)}{x^3}=0 lim61+x3f(x)=0,即 lim ⁡ x 3 f ( x ) = − 6 \lim \frac{x^3}{f(x)} = -6 limf(x)x3=6

题型四 无穷小阶和比较

无穷小阶:待定阶数 k > 0 k>0 k>0,极限 lim ⁡ f ( x ) x k = c ≠ 0 \lim \frac{f(x)}{x^k}=c≠0 limxkf(x)=c=0,泰勒阶数 o ( x m ) + o ( x n ) = o ( x m i n ( m , n ) ) o(x^{m})+o(x^{n})=o(x^{min(m,n)} ) o(xm)+o(xn)=o(xmin(m,n))

x → 0 x \to 0 x0 时,求 x − ln ⁡ ( 1 + tan ⁡ x ) x - \ln (1+\tan x) xln(1+tanx) 阶数
解:
x → 0 x \to 0 x0 ln ⁡ ( 1 + tan ⁡ x ) = tan ⁡ x − tan ⁡ 2 x 2 + o ( tan ⁡ 2 x ) \ln (1+\tan x)=\tan x -\frac{\tan^{2} x}{2}+o(\tan^2 x) ln(1+tanx)=tanx2tan2x+o(tan2x),故 x − ln ⁡ ( 1 + tan ⁡ x ) = x − tan ⁡ x + tan ⁡ 2 x 2 + o ( tan ⁡ 2 x ) x - \ln (1+\tan x)=x - \tan x + \frac{\tan^{2} x}{2}+o(\tan^2 x) xln(1+tanx)=xtanx+2tan2x+o(tan2x)
x − tan ⁡ x x - \tan x xtanx ~ − x 3 3 -\frac{x^3}{3} 3x3,根据 o ( x m ) + o ( x n ) = o ( x m i n ( m , n ) ) o(x^{m})+o(x^{n})=o(x^{min(m,n)} ) o(xm)+o(xn)=o(xmin(m,n)),故 x − ln ⁡ ( 1 + tan ⁡ x ) x - \ln (1+\tan x) xln(1+tanx) ~ 1 2 tan ⁡ 2 x \frac{1}{2} \tan^2 x 21tan2x ~ 1 2 x 2 \frac{1}{2}x^2 21x2

无穷小比较:无穷小 f ( x ) f(x) f(x) g ( x ) g(x) g(x),极限 lim ⁡ f ( x ) g ( x ) = c \lim \frac{f(x)}{g(x)}=c limg(x)f(x)=c c = 0 c=0 c=0 分子高, c = ∞ c=\infin c= 分母高

α > 0 , β > 0 \alpha>0,\beta>0 α>0β>0,当 x → + ∞ x \to +\infin x+ 时,将无穷小量 1 x α , 1 ln ⁡ β x , e − x \frac{1}{x^\alpha}, \frac{1}{\ln^{\beta}x}, e^{-x} xα1,lnβx1,ex 按从低阶到高阶的顺序排列
解:
lim ⁡ x → + ∞ e − x 1 x α = lim ⁡ x → + ∞ x α e x = lim ⁡ x → + ∞ α x α − 1 e x = . . . = lim ⁡ x → + ∞ α ! e x = 0 , 故 1 x α < e − x \lim_{x \to +\infin} \frac{e^{-x}}{\frac{1}{x^\alpha} } =\lim_{x \to +\infin} \frac{x^\alpha}{e^x } =\lim_{x \to +\infin} \frac{\alpha x^{\alpha-1} }{e^x } =... =\lim_{x \to +\infin} \frac{\alpha ! }{e^x }=0,故 \frac{1}{x^\alpha} < e^{-x} x+limxα1ex=x+limexxα=x+limexαxα1=...=x+limexα!=0xα1<ex

lim ⁡ x → + ∞ 1 x α 1 ln ⁡ β x = lim ⁡ x → + ∞ ln ⁡ β x x α = lim ⁡ t → + ∞ t β e α t = . . . = lim ⁡ t → + ∞ β t β − 1 α e α t = lim ⁡ t → + ∞ β ! α ! e α t = 0 , 故 1 ln ⁡ β x < 1 x α \lim_{x \to +\infin} \frac{\frac{1}{x^\alpha} }{\frac{1}{\ln^{\beta}x} } = \lim_{x \to +\infin} \frac{\ln^{\beta}x}{x^\alpha } = \lim_{t \to +\infin} \frac{t^{\beta} }{e^{\alpha t} } =...= \lim_{t \to +\infin} \frac{\beta t^{\beta-1} }{\alpha e^{\alpha t} } = \lim_{t \to +\infin} \frac{\beta! }{\alpha ! e^{\alpha t} }=0,故 \frac{1}{\ln^{\beta}x} < \frac{1}{x^\alpha} x+limlnβx1xα1=x+limxαlnβx=t+limeαttβ=...=t+limαeαtβtβ1=t+limα!eαtβ!=0lnβx1<xα1

题型五 极限存在性

证明极限存在

  • 函数极限 lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0} f(x)=A limxx0f(x)=A ∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , 恒 有 ∣ f ( x ) − A ∣ < ϵ 成 立 \forall \epsilon >0,\exist \delta>0,当 0<|x-x_0|<\delta时,恒有 |f(x)-A|<\epsilon成立 ϵ>0δ>00<xx0<δf(x)A<ϵ
  • 数列极限 lim ⁡ n → ∞ x n = A \lim_{n \to \infin} x_n=A limnxn=A ∀ ϵ > 0 , ∃ 正 整 数 N , 当 n > N 时 , 恒 有 ∣ x n − A ∣ < ϵ 成 立 \forall \epsilon >0,\exist 正整数N,当 n > N时,恒有 |x_n-A|<\epsilon成立 ϵ>0Nn>NxnA<ϵ

定义证明 lim ⁡ x → 1 x − 2 x 2 + 3 = − 1 4 \lim_{x \to 1} \frac{x-2}{x^2+3}=-\frac{1}{4} limx1x2+3x2=41

解:
∀ ϵ > 0 , 要 使 得 ∣ f ( x ) − A ∣ = ∣ x − 2 x + 3 − ( − 1 4 ) ∣ = ∣ ( x − 1 ) ( x + 5 ) ∣ 4 ( x 2 + 3 ) < ϵ \forall \epsilon >0,要使得 |f(x)-A|=|\frac{x-2}{x^+3}-(-\frac{1}{4}) |=\frac{|(x-1)(x+5)|}{4(x^2+3)} <\epsilon ϵ>0使f(x)A=x+3x2(41)=4(x2+3)(x1)(x+5)<ϵ ∣ f ( x ) − A ∣ = ∣ ( x − 1 ) ( x + 5 ) ∣ 4 ( x 2 + 3 ) 需 要 消 除 ∣ x + 5 ∣ 4 ( x 2 + 3 ) , 方 可 与 ∣ x − x 0 ∣ = ∣ x − 1 ∣ 产 生 关 系 |f(x)-A|=\frac{|(x-1)(x+5)|}{4(x^2+3)} 需要消除\frac{|x+5|}{4(x^2+3)},方可与|x-x_0|=|x-1|产生关系 f(x)A=4(x2+3)(x1)(x+5)4(x2+3)x+5xx0=x1 由 于 x → 1 , 设 ∣ x − 1 ∣ < 1 , 即 0 < x < 2 , ∣ x + 5 ∣ 4 ( x 2 + 3 ) 求 导 判 断 最 大 值 为 5 12 由于 x \to 1,设 |x-1| < 1,即 0 < x < 2,\frac{|x+5|}{4(x^2+3)}求导判断最大值为\frac{5}{12} x1x1<10<x<24(x2+3)x+5125 ∣ f ( x ) − A ∣ = ∣ ( x − 1 ) ( x + 5 ) ∣ 4 ( x 2 + 3 ) ≤ 5 12 ∣ x − 1 ∣ < ∣ x − 1 ∣ < ϵ |f(x)-A|=\frac{|(x-1)(x+5)|}{4(x^2+3)}≤\frac{5}{12}|x-1| <|x-1|<\epsilon f(x)A=4(x2+3)(x1)(x+5)125x1<x1<ϵ 取 δ = m i n { 1 , ϵ } , 则 当 0 < ∣ x − 1 ∣ < δ 时 , ∣ f ( x ) − A ∣ < ϵ 取 \delta=min\{1,\epsilon\},则当 0<|x-1|<\delta时,|f(x)-A|<\epsilon δ=min{1,ϵ}0<x1<δf(x)A<ϵ

定义证明 lim ⁡ n → ∞ 2 n + ( − 1 ) n n = 2 \lim_{n \to \infin} \frac{2n+(-1)^n}{n}=2 limnn2n+(1)n=2 成立

解:
∀ ϵ > 0 , 要 使 得 ∣ x n − A ∣ = ∣ 2 n + ( − 1 ) n n − 2 ∣ = 1 n < ϵ 成 立 , 只 需 n > 1 ϵ 成 立 \forall \epsilon >0,要使得 |x_n-A|= |\frac{2n+(-1)^n}{n}-2|=\frac{1}{n}<\epsilon 成立,只需 n > \frac{1}{\epsilon} 成立 ϵ>0使xnA=n2n+(1)n2=n1<ϵn>ϵ1 取 N = [ 1 ϵ ] , 则 当 n > N 时 , ∣ x n − A ∣ = ∣ 2 n + ( − 1 ) n n − 2 ∣ = 1 n < ϵ 恒 成 立 , 故 极 限 存 在 为 2 取 N=[\frac{1}{\epsilon}],则当 n>N时, |x_n-A|= |\frac{2n+(-1)^n}{n}-2|=\frac{1}{n}<\epsilon 恒成立,故极限存在为 2 N=[ϵ1]n>NxnA=n2n+(1)n2=n1<ϵ2

证明极限不存在

  • 左右极限存在: lim ⁡ x → x 0 − f ( x ) = A ≠ lim ⁡ x → x 0 + f ( x ) = A \lim x \to x_0^- f(x)=A ≠\lim x \to x_0^+ f(x)=A limxx0f(x)=A=limxx0+f(x)=A
  • 左右极限不存在: 任 意 数 列 { x n } , x n → x 0 ( n → ∞ ) , 有 lim ⁡ n → ∞ f ( x n ) = A , lim ⁡ n → ∞ f ( x n ) = B , 且 A ≠ B , 违 反 极 限 唯 一 性 任意数列 \{x_n\},x_n\to x_0 (n \to \infin),有 \lim_{n \to \infin} f(x_n)=A,\lim_{n \to \infin} f(x_n)=B,且A≠B,违反极限唯一性 {xn}xnx0(n)limnf(xn)=Alimnf(xn)=BA=B

证明极限 lim ⁡ x → ∞ 2 x − 2 − x 2 x − 2 − x \lim_{x \to \infin} \frac{2^x-2^{-x}}{2^x-2^{-x}} limx2x2x2x2x 不存在

解:
lim ⁡ x → + ∞ 2 x − 2 − x 2 x − 2 − x = lim ⁡ x → + ∞ 1 − 2 − 2 x 1 − 2 − 2 x = 1 , lim ⁡ x → − ∞ 2 x − 2 − x 2 x − 2 − x = lim ⁡ x → + ∞ 2 2 x − 1 2 2 x + 1 = − 1 \lim_{x \to +\infin} \frac{2^x-2^{-x}}{2^x-2^{-x}} =\lim_{x \to +\infin} \frac{1-2^{-2x}}{1-2^{-2x}}=1, \lim_{x \to -\infin} \frac{2^x-2^{-x}}{2^x-2^{-x}} =\lim_{x \to +\infin} \frac{2^{2x}-1}{2^{2x}+1}=-1 x+lim2x2x2x2x=x+lim122x122x=1xlim2x2x2x2x=x+lim22x+122x1=1 左 右 极 限 存 在 但 不 相 等 , 所 以 极 限 lim ⁡ x → ∞ 2 x − 2 − x 2 x − 2 − x 不 存 在 左右极限存在但不相等,所以极限 \lim_{x \to \infin} \frac{2^x-2^{-x}}{2^x-2^{-x}}不存在 xlim2x2x2x2x

证明 lim ⁡ x → 0 s i n 1 x \lim_{x \to 0} sin\frac{1}{x} limx0sinx1 不存在

解:
取 两 个 子 数 列 , x n = { 1 2 n π + π 2 } , y n = { 1 2 n π } 取两个子数列,{x_{n}}=\{ \frac{1}{2n\pi + \frac{\pi}{2} } \}, {y_{n}}=\{ \frac{1}{2n\pi } \} xn={2nπ+2π1}yn={2nπ1} 则 均 有 x n → 0 , x n → 0 ( n → ∞ ) 则均有 x_{n} \to 0, x_{n} \to 0 (n \to \infin) xn0xn0(n) 但 lim ⁡ n → ∞ s i n 1 x n = 1 , lim ⁡ n → ∞ s i n 1 y n = 0 , 所 以 极 限 不 存 在 但 \lim_{n \to \infin} { sin\frac{1}{ x_{n} } } = 1, \lim_{n \to \infin} { sin\frac{1}{ y_{n} } } = 0,所以极限不存在 nlimsinxn1=1nlimsinyn1=0

题型六 极限有界性

极限有界性:如果 lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limxx0f(x)=A,则存在正常数 M M M δ \delta δ,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, ∣ f ( x ) ∣ ≤ M |f(x)|≤M f(x)M

  • f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 连续,则 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 有界
  • f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 连续,且极限 lim ⁡ x → a + f ( x ) \lim_{x \to a^+}f(x) limxa+f(x) lim ⁡ x → b − f ( x ) \lim_{x \to b^-}f(x) limxbf(x) 存在,则 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 有界

函数 f ( x ) = ∣ x ∣ sin ⁡ ( x − 2 ) x ( x − 1 ) ( x − 2 ) f(x)=\frac{|x|\sin (x-2)}{x(x-1)(x-2)} f(x)=x(x1)(x2)xsin(x2) 在下列哪个区间有界
( A ) ( − 1 , 0 ) ( B ) ( − 1 , 0 ) ( C ) ( − 1 , 0 ) ( D ) ( − 1 , 0 ) (A) (-1,0) \quad (B)(-1,0) \quad (C)(-1,0) \quad (D)(-1,0) (A)(1,0)(B)(1,0)(C)(1,0)(D)(1,0)
解:
x ≠ 0 , 1 , 2 x≠0,1,2 x=0,1,2 时, f ( x ) f(x) f(x) 连续
lim ⁡ x → 1 + f ( x ) = − sin ⁡ 3 18 , lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 + f ( x ) = − sin ⁡ 2 4 \lim_{x \to 1^+}f(x)=-\frac{\sin 3}{18}, \lim_{x \to 0^-}f(x)=\lim_{x \to 0^+}f(x)=-\frac{\sin 2}{4} x1+limf(x)=18sin3x0limf(x)=x0+limf(x)=4sin2

lim ⁡ x → 1 f ( x ) = ∞ , lim ⁡ x → 2 f ( x ) = ∞ \lim_{x \to 1}f(x)=\infin,\lim_{x \to 2}f(x)=\infin x1limf(x)=x2limf(x)=

所以函数 f ( x ) f(x) f(x) ( − 1 , 0 ) (-1,0) (1,0) 有界

有界函数的和差积仍有界
f ′ ( x ) f^{'}(x) f(x) 在有限区间 ( a , b ) (a,b) (a,b) 有界,则 f ( x ) f(x) f(x) 在区间上有界

f ( x ) = { ( x 3 − 1 ) ( 1 − cos ⁡ x ) sin ⁡ x ( x 2 + 1 ) ∣ x 3 ∣ x ≠ 0 无 定 义 x = 0 f(x)= \begin{cases} \frac{(x^3-1)(1-\cos x)\sin x}{(x^2+1)|x^3|} && x≠0\\ 无定义 && x=0 \end{cases} f(x)={(x2+1)x3(x31)(1cosx)sinxx=0x=0,证 f ( x ) f(x) f(x) 在定义域内是否有界
解:
x ≠ 0 , − ∞ , + ∞ x≠0, -\infin,+\infin x=0,+时, f ( x ) f(x) f(x)连续
lim ⁡ x → 0 − f ( x ) = − 1 2 , lim ⁡ x → 0 + f ( x ) = 1 2 \lim_{x \to 0^-}f(x)=-\frac{1}{2},\lim_{x \to 0^+}f(x)=\frac{1}{2} x0limf(x)=21x0+limf(x)=21

lim ⁡ x → − ∞ ( x 3 − 1 ) ( 1 − cos ⁡ x ) ( x 2 + 1 ) ∣ x 3 ∣ = 0 , ( x 3 − 1 ) ( 1 − cos ⁡ x ) ( x 2 + 1 ) ∣ x 3 ∣ 有 界 , 且 sin ⁡ x 有 界 \lim_{x \to -\infin} \frac{(x^3-1)(1-\cos x)}{(x^2+1)|x^3|}=0,\frac{(x^3-1)(1-\cos x)}{(x^2+1)|x^3|} 有界,且 \sin x 有界 xlim(x2+1)x3(x31)(1cosx)=0(x2+1)x3(x31)(1cosx)sinx

lim ⁡ x → + ∞ ( x 3 − 1 ) ( 1 − cos ⁡ x ) ( x 2 + 1 ) ∣ x 3 ∣ = 0 , ( x 3 − 1 ) ( 1 − cos ⁡ x ) ( x 2 + 1 ) ∣ x 3 ∣ 有 界 , 且 sin ⁡ x 有 界 \lim_{x \to +\infin} \frac{(x^3-1)(1-\cos x)}{(x^2+1)|x^3|}=0,\frac{(x^3-1)(1-\cos x)}{(x^2+1)|x^3|} 有界,且 \sin x 有界 x+lim(x2+1)x3(x31)(1cosx)=0(x2+1)x3(x31)(1cosx)sinx f ( x ) f(x) f(x) 在定义域内有界

题型七 极限保号性

极限保号性:如果 lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limxx0f(x)=A,且 A > 0 A>0 A>0,则存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, f ( x ) > 0 f(x)>0 f(x)>0

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值