极限题型一:求函数极限常见题型

0/0型 ①洛必达 ②等价无穷小代换 ③泰勒公式

遇到两个根号相减→方法一:有理化 方法二:拉格朗日中值定理(两个函数值的差)

遇到tanx-sinx→想到tanx=sinx/cosx,sinx=tanx•cosx 提取出公因子→tanx-sinx=tanx(1-cosx)

遇到1-cosx→等价代换\frac{1}{2}x^{2} 遇到x-ln(1+x)→等价代换\frac{1}{2}x^{2}

遇到两个以e为底的指数函数相减→方法一:提取相同因子,变乘积,使得括号内e^{\left ( ax+b\right )}-1等价代换ax+b(前提指数趋于0)。方法二:拉格朗日中值定理(看做两个函数值的差)

遇到在相减的式子中有单个的cosx→可以根据另外几个数的阶级,泰勒展开cosx=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+o\left ( x^{4}\right )【出现函数值的差值 都可以试一下拉格朗日中值定理!】

遇到分子是arctanx-sinx→增减一项x:(arctanx-x)+(x-sinx)~-\frac{1}{3}x^{3}+\frac{1}{6}x^{3}【加减关系中可以用等价无穷小代换的条件:减法中两减项不等价lim\frac{a_{1}}{b_{1}}\neq 1,a-b~a1-b1;加法中两加项lim\frac{a_{1}}{b_{1}}\neq -1,a+b~a1+b1】

遇到积分区间为0到x的定积分→不好积时可以等价代换化简,eg.0到x的定积分fln(1+t的平方)dt~ft的平方dt=1/3x的三次方 x+sinx→等价代换2x

遇到x趋于0,(1+x)^a→等价代换ax

【推广到a(x)趋于0,a(x)b(x)趋于0,[1+a(x)]^{b(x)}→等价代换a(x)b(x)】多用于出现幂指函数时(底数包含x,指数也包含x),把底数凑成1+a(x)的形式再用等价代换

【推广到x趋于0,(1+x)^{x}→等价代换x^{2}

同时遇到cosx,e^x,ln(1+x)→泰勒展开式

遇到x趋于0时x+ln(1-x)→=ln(1-x)-(-x)~-\frac{1}{2}\left ( -x \right )^{2}


∞/∞型 ①洛必达 ②分子分母同除以分子和分母各项中最高阶的无穷大

【怎么找出最高阶的无穷大?】常用的一些无穷大趋向无穷的速度快慢比较:当x→+∞时,对数函数<<幂函数<<指数函数(都是比较规范的函数:对数函数的底数大于0,幂函数的幂次大于0,指数函数的底数大于1)武忠祥P12

遇到x趋于-∞时→注意无穷大趋向无穷的速度快慢比较:是当x→+∞时,所以这里特别注意,分子和分母各项中最高阶的无穷大有可能是(-x),而不是x   


∞-∞型 ①分式差:通分变成0/0型 ②根式差:根式有理化 ③∞-∞型,提出无穷因子,再等价代换or变量代换(eg.令x=1/t)or泰勒公式

遇到cotx→转化成\frac{1}{tanx}

∞-∞型,分式差:通分后遇到tanx^{2}-x^{2}(tanx-x)(tanx+x),等价代换tanx-x\sim \frac{1}{3}x^{3},tanx+x\sim 2x

等价代换:x趋于0时x-ln(1+x)\sim \frac{1}{2}x^{2}【推广到x趋于∞时\frac{1}{x}-ln(1+\frac{1}{x})\sim \frac{1}{2}\frac{1}{x^{2}}

【 ∞-∞型:可提出无穷因子x^{2},再等价代换】

【遇到幂指函数,先取对数,保持恒等!】eg.(ax+b)^{cx}=e^{ln(ax+b)^{cx}}=e^{cxln(ax+b)}

 综合复杂题,用到多种方法:部分是∞/∞型→分子分母同除各项中最高阶的无穷大,整体是∞-∞型分式差→通分,出现幂指函数→取对数保持恒等,基本极限x趋向+∞时lim(1+1/x)^x=e

①前半部分是∞/∞型,先尝试化简→分子分母同除各项中最高阶的无穷大x^{x}\frac{x^{1+x}/x^x}{(1+x)^{x}/x^x}=\frac{x}{(1+\frac{1}{x})^{x}}

②整体是∞-∞型分式差→通分,分子中提出无穷因子x

③分母中出现基本极限\lim_{x\rightarrow +\infty }(1+\frac{1}{x})^{x}=e,极限非零的因子的极限可以先提出=\frac{1}{e^{2}}\lim_{x\rightharpoonup +\infty }x\left [ e-(1+\frac{1}{x})^{x} \right ]

④幂指函数→取对数,保持恒等:(1+\frac{1}{x})^{x}=e^{xln(1+\frac{1}{x})}

=\frac{1}{e^{2}}\lim_{x\rightharpoonup +\infty }x\left [ e-e^{xln(1+\frac{1}{x})} \right ]=-\frac{1}{e}\lim_{x\rightharpoonup +\infty }x\left [ e^{xln(1+\frac{1}{x})-1}-1 \right ]

⑤等价代换:x趋于0时e^{x}-1\sim x,式中e^{xln(1+\frac{1}{x})-1}-1\sim xln(1+\frac{1}{x})-1

=-\frac{1}{e}\lim_{x\rightharpoonup +\infty }x\left [ xln(1+\frac{1}{x})-1\right ]

⑥再凑出一个等价代换:x趋于0时x-ln(1+x)\sim \frac{1}{2}x^{2}

=-\frac{1}{e}\lim_{x\rightharpoonup +\infty }x^{2}\left [ ln(1+\frac{1}{x})-\frac{1}{x}\right ]=-\frac{1}{e}\lim_{x\rightharpoonup +\infty }x^{2}\left ( -\frac{1}{2} \frac{1}{x^{2}}\right )=\frac{1}{2e}


0×∞型 ①化成0/0型 ②化成∞/∞型

再用0/0型 ①洛必达②等价无穷小代换③泰勒公式;∞/∞型 ①洛必达②分子分母同除以分子和分母各项中最高阶的无穷大

题型:0×∞型,带绝对值求极限

【特殊的等价代换:x趋向于1时,lnx=ln[1+(x-1)]~x-1】

★0×∞型 ,化成∞/∞型【注意把复杂的对数函数ln放在分子上】,再用洛必达

遇到带绝对值的时候用洛必达→其实只需分类讨论:x<1时,[ln|1-x|]’=[ln(1-x)]’=\frac{-1}{1-x};当x>1时,[ln|1-x|]’=[ln(x-1)]’=\frac{1}{x-1}=\frac{-1}{1-x} 。综上可得[ln|1-x|]’=\frac{-1}{1-x}


1^{\infty }①凑基本极限 ②幂指函数取对数改写成指数函数 ③利用结论

若limα(x)=0,limβ(x)=∞,且limα(x)β(x)=A,则lim\left [ 1+\alpha \left ( x \right ) \right ]^{\beta \left ( x \right )}=e^{A}

【方法③最简单,三步走:(1)写标准型 原式=lim\left ( 1+\alpha \right )^{\beta } (2)求极限 lim\alpha \beta=A  (3)写结果 原式=e^{A}

遇到一个复杂的幂指函数→可以拆成两个简单的幂指函数分别求极限

 【选择题中出现常数a,也可以用特殊值法设a=0来化简式子】

遇到cos2x→想到化开cos2x=cos^{2}x-sin^{2}x=1-2sin^{2}x


\infty ^{0}0^{0 }型,这类极限的函数一定是幂指函数lim\left [ f\left ( x \right ) \right ]^{g\left ( x \right )} ①幂指函数取对数,保持恒等lime^{g\left ( x \right )lnf\left ( x \right )}

化为0·∞型 ①化成0/0型 ②化成∞/∞型

遇到求幂指函数嵌套幂指函数的极限

★先判断出极限的类型:

【幂指函数比较多也没关系,挨个取对数保持恒等即可】

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值