极限及简单例题

image-20220924153047793

一 极限

1.1 定义

数列极限

lim ⁡ n → ∞ x n = a : ∀ ϵ > 0 , ∃ N ( ϵ ) > 0 , 当 n > N 时,有 ∣ x n − a ∣ < ϵ \lim_{n \rightarrow \infty} x _ { n } = a : \forall { \epsilon } > 0,\exists N(\epsilon) > 0,当n > N时,有| x _ { n } - a | < \epsilon limnxn=a:ϵ>0,N(ϵ)>0,n>N时,有xna<ϵ

注意

  • 与前面的有限项无关
  • 若原数列极限存在则子奇、偶列极限存在且相等
  • 只有有限个(最多N个)点 在区间 ( a − ϵ , a + ϵ ) (a-\epsilon,a+\epsilon) (aϵ,a+ϵ)之外
  • 数列极限是函数极限的一种、定义中绝对值小于ε,即可能等于0
  • 数列极限中n是下标,默认为趋于正无穷,数列中前面的项是有限个的,那么在前面一定有一个最大值。

函数极限

​ 自变量趋于±无穷时

lim ⁡ x → ∞ f ( x ) = A : ∀ ϵ > 0 , ∃ X > 0 , 当 ∣ x ∣ > X 时,有 ∣ f ( x ) − A ∣ < ϵ \lim_{ x\rightarrow \infty } {f ( x )} = A : \forall{ \epsilon } > 0 , \exists X > 0,当| x | > X 时,有| {f ( x )} - A | < \epsilon limxf(x)=A:ϵ>0,X>0,x>X时,有f(x)A<ϵ

​ 自变量趋于有限值时

lim ⁡ x → x 0   f ( x ) = A : ∀ ϵ > 0 , ∃ X > 0 , 当 0 < ∣ x − x 0 ∣ < ϵ 时 , 有 ∣ f ( x ) − A ∣ < ϵ \operatorname* { lim } _ { x \rightarrow x_0 } \ {f ( x )} = A :\forall { \epsilon } > 0 , \exists X > 0,当 0 < | x - x _ { 0 } | < \epsilon时,有| {f ( x )} - A | < \epsilon limxx0 f(x)=A:ϵ>0,X>0,0<xx0<ϵ,f(x)A<ϵ

注意

  • 极限值与x=x0这点的函数值无关联
  • 函数极限x趋于∞指的是 |x| 趋于正无穷,数列极限中n趋于无穷是指n趋于正无穷
  • 函数极限自变量是趋于有限值而不等于有限值、极限存在与否和在x0是否有定义无关(可能是间断点)

极限存在的充要条件是 左右极限都存在且相等

1.2 性质

性质解析
唯一性极限若存在,则极限一定唯一
保号性存在去心邻域使得f(x)同号,延申出保序性,注意极限=0时
有界性极限的去心邻域内有界
子列极限存在则任一子列存在相同极限,反之不对

保号性(武2023强化E02)(下面的1A≥B对应上面的1,B取0,gx取0时不成立)660 125题

image-20220929153850851

四则运算性质

​ 若有一个极限不存在则运算性质不成立,若 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim {f(x)}=A, \lim g(x)=B limf(x)=A,limg(x)=B,那么:
lim ⁡ ( f ( x ) ± g ( x ) ) = lim ⁡ f ( x ) ± lim ⁡ g ( x ) lim ⁡ ( f ( x ) ⋅ g ( x ) ) = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) lim ⁡ ( f ( x ) g ( x ) ) = lim ⁡ f ( x ) lim ⁡ g ( x ) ( B ≠ 0 ) \begin{aligned} &\lim ({f(x)} \pm g(x))=\lim {f(x)} \pm \lim g(x) \\ &\lim ({f(x)} \cdot g(x))=\lim {f(x)} \cdot \lim g(x) \\ &\lim \left(\frac{{f(x)}}{g(x)}\right)=\frac{\lim {f(x)}}{\lim g(x)}(B \neq0) \end{aligned} lim(f(x)±g(x))=limf(x)±limg(x)lim(f(x)g(x))=limf(x)limg(x)lim(g(x)f(x))=limg(x)limf(x)(B=0)
注意

  • 存在±不存在 = 不存在,其他均不一定
  • 极限非零的因子的极限可以先求出
  • 和的极限 等于 极限的和 条件是有限项

复合运算性质

image-20210918150253572

注解(看“老大”,原理是分子分母同时除以老大)
P ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n − 1 x + a n , Q ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b n − 1 x + b m , 其中 a 0 b 0 ≠ 0 则 lim ⁡ x → ∞ P ( x ) Q ( x ) = { a 0 b 0 , m = n , 0 , m > n , ∞ , m < n . \begin{aligned} &P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}, \\&Q(x)=b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{n-1} x+b_{m}, \text {其中} a_{0} b_{0} \neq0 \\&则\lim_{x \rightarrow \infty} \frac{P(x)}{Q(x)}= \begin{cases}\frac{a_{0}}{b_{0}}, & m=n, \\0, & m>n, \\ \infty, & m<n .\end{cases} \end{aligned} P(x)=a0xn+a1xn1++an1x+an,Q(x)=b0xm+b1xm1++bn1x+bm,其中a0b0=0xlimQ(x)P(x)= b0a0,0,,m=n,m>n,m<n.
x趋于正无穷时,老大是xn

x趋于0时,“老大”是低次项,看最低次。

夹逼定理/迫敛定理

image-20210918150717446

注解

image-20210918150747237

1.3 重要极限

6个重要极限

1. lim ⁡ x → 0 sin ⁡ x x = 1 2. lim ⁡ x → 0 ( 1 + x ) 1 x = e 3. lim ⁡ x → 0 + x x = 1 4. lim ⁡ x → + ∞ x 1 x = 1 5. lim ⁡ x → 0 + ( 1 + 1 x ) x = 1 6. lim ⁡ x → + ∞ ( 1 + x ) 1 x = 1 \begin{aligned} 1. & \lim_{x \rightarrow 0}\frac{\sin x}{x} = 1 \\ 2. & \lim_{x \rightarrow 0}(1+x)^{^\frac{1}{x}} = e \\ 3. & \lim_{x \rightarrow 0+} x^x = 1 \\ 4. & \lim_{x \rightarrow +\infty}x^{\frac{1}{x}} = 1 \\ 5. & \lim_{x \rightarrow 0^+} (1+\frac{1}{x})^x=1 \\ 6. & \lim_{x \rightarrow +\infty} (1+x)^{\frac{1}{x}}=1 \\ \end{aligned} 1.2.3.4.5.6.x0limxsinx=1x0lim(1+x)x1=ex0+limxx=1x+limxx1=1x0+lim(1+x1)x=1x+lim(1+x)x1=1

趋向于0而不等于0,注意有两个方向趋于0

(1)的深入

​ 注意是函数的极限,x是趋于0而不能等于0,当x=tsin(1/t)时,当t=Π/n时,x=0,不符合定义,因此 sin ⁡ ( x sin ⁡ 1 x ) x sin ⁡ 1 x ≠ 1 \frac{\sin(x\sin \frac{1}{x})}{x\sin \frac{1}{x}} \neq 1 xsinx1sin(xsinx1)=1,有无定义点,因此是极限不存在。

(2)的推广

​ 若 lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ \lim \alpha(x)=0, \lim \beta(x)=\infty limα(x)=0,limβ(x)=,且 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x) \beta(x)=A limα(x)β(x)=A,则
lim ⁡ [ 1 + α ( x ) ] β ( x ) = e A \lim [1+\alpha(x)]^{\beta(x)}=\mathrm{e}^{A} lim[1+α(x)]β(x)=eA A一定是要存在且为常数吗?

证明

e lim ⁡ x → 0 + x ln ⁡ x = e lim ⁡ x → 0 + ln ⁡ x 1 x = e lim ⁡ x → 0 + 1 x 1 − x 2 = 1 \begin{aligned} e^{\lim_{x \rightarrow 0+}x\ln x} = e^{\lim_{x \rightarrow 0+}\frac{\ln x}{\frac{1}{x}}} = e^{\lim_{x \rightarrow 0+}\frac{\frac{1}{x}}{\frac{1}{-x^2}}} = 1 \end{aligned} elimx0+xlnx=elimx0+x1lnx=elimx0+x21x1=1

令 1 x = t 则当 x → + ∞ 时 , t → 0 + e lim ⁡ t → 0 + t ln ⁡ 1 t = e lim ⁡ t → 0 + ln ⁡ 1 t 1 t = 1 令\frac{1}{x} = t 则当x\rightarrow+\infty时,t \rightarrow 0+ \\ e^{\lim_{t \rightarrow 0+}t \ln{\frac{1}{t}}} = e^{\lim_{t \rightarrow 0+}\frac{\ln{\frac{1}{t}}}{\frac{1}{t}}} = 1 x1=t则当x+,t0+elimt0+tlnt1=elimt0+t1lnt1=1

​ 5.
lim ⁡ x → 0 + e x ln ⁡ ( 1 + 1 x ) = e lim ⁡ x → 0 + ln ⁡ ( 1 + 1 / x ) 1 / x = e 0 = 1 \lim _{x \rightarrow 0^+}e^{x \ln{(1+\frac{1}{x})}} = e^{\lim _{x \rightarrow 0^+}\frac{\ln (1+1/x)}{1/x}} = e^0=1 x0+limexln(1+x1)=elimx0+1/xln(1+1/x)=e0=1

1.4 单调数列

单调递增

​ 数列无上界,则极限=+∞

​ 数列有上界,则存在M使得极限≤M

单调递减

​ 数列无下界,则极限=-∞

​ 数列有下界,则存在N使得极限≥N

一个小结论

​ 设 a 1 , a 2 , . . . a n > 0 , 则 lim ⁡ n → ∞ a 1 n + a 2 n + . . . + a n n n = max ⁡ ( a 1 , a 2 , . . . a n ) a_1,a_2,...a_n >0,则\lim_{n \rightarrow \infty}\sqrt[n]{a_1^n+a_2^n+...+a_n^n} = \max({a_1,a_2,...a_n}) a1,a2,...an>0,limnna1n+a2n+...+ann =max(a1,a2,...an)

lim ⁡ n → ∞ ( 1 + x n + ( x 2 2 ) n ) 1 / n = m a x ( 1 、 x 、 x 2 2 ) , x > 0 \lim_{n \rightarrow \infty}(1+x^n+(\frac{x^2}{2})^n)^{1/n} = max{(1、x、\frac{x^2}{2})} ,x>0 limn(1+xn+(2x2)n)1/n=max(1x2x2),x>0

几何平均

单调有界数列必有极限即收敛,注意并不要求从首项开始。

【例题】2018数一

image-20221214164809062

二 无穷量

2.1 定义

无穷小

​ 若 f ( x ) {f ( x )} f(x) x → x 0 x \rightarrow x_{ 0 } xx0 ( x → ∞ ) ( x \rightarrow \infty ) (x)时的极限为,则称 f ( x ) {f ( x )} f(x) x → x 0 x \rightarrow x _ { 0 } xx0 ( x → ∞ ) ( x \rightarrow \infty ) (x)时的无穷小。

无穷大

​ 若 lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x \rightarrow x_{0}} {f(x)}=\infty limxx0f(x)= (或 lim ⁡ x → ∞ f ( x ) = ∞ \lim_{x \rightarrow \infty} {f(x)}=\infty limxf(x)= ),则称 f ( x ) {f(x)} f(x) x → x 0 x \rightarrow x_{0} xx0 (或 x → ∞ x \rightarrow \infty x )时的无穷大(可正可负)

无穷大与无界

​ 数列 { x n } \left\{x_{n}\right\} {xn}是无穷大量: ∀ M > 0 , ∃ N \forall M>0, \exists N M>0,N,当 n > N n>N n>N 时,恒有 ∣ x n ∣ > M \left|x_{n}\right|>M xn>M

​ 数列 { x n } \left\{x_{n}\right\} {xn}是无界变量: ∀ M > 0 , ∃ N \forall M>0, \exists N M>0,N使 ∣ x N ∣ > M \left|x_{N}\right|>M xN>M

注意

  • 无穷小意味着极限为而非负无穷,无穷大可以是正无穷也可以是负无穷
  • 无穷大量一定是无界变量;但无界变量不一定是无穷大量。无穷大量包含无界变量,一个是恒有,一个是存在。
  • 无穷大量相乘一定是无穷大量,而无界变量相乘不一定是无界变量,如错位(1 0 3 0,…;0 2 0 4…)

​ 发散主要是和收敛对应的。无穷大肯定就发散了,无界也发散了。但发散不一定无穷大,发散不一定无界,发散只是不收敛。

2.2 性质

无穷小

  • 有限个无穷小 的和、差、积 仍为无穷小
  • 常数或有界量与无穷小之积仍是无穷小

无穷大

  • 平时说的无穷大是指绝对值无穷,-∞也是无穷大
  • 无穷大与有界量之积是不定

无穷小量的比较

(1)高阶:若 lim ⁡ β ( x ) α ( x ) = 0 \lim \frac{\beta(x)}{\alpha(x)}=0 limα(x)β(x)=0,记为 β ( x ) = o ( α ( x ) ) \beta(x)=o(\alpha(x)) β(x)=o(α(x));
(2)同阶:若 lim ⁡ β ( x ) α ( x ) = C ≠ 0 \lim \frac{\beta(x)}{\alpha(x)}=C \neq0 limα(x)β(x)=C=0;
(3)等价:若 lim ⁡ β ( x ) α ( x ) = 1 \lim \frac{\beta(x)}{\alpha(x)}=1 limα(x)β(x)=1,记为 α ( x ) ∼ β ( x ) \alpha(x) \sim \beta(x) α(x)β(x);
(4)无穷小的阶:若 lim ⁡ β ( x ) [ α ( x ) ] k = C ≠ 0 \lim \frac{\beta(x)}{[\alpha(x)]^{k}}=C \neq0 lim[α(x)]kβ(x)=C=0,称 β ( x ) \beta(x) β(x) α ( x ) \alpha(x) α(x) k k k阶无穷小;
(5)低阶:若 lim ⁡ β ( x ) α ( x ) = ∞ \lim \frac{\beta(x)}{\alpha(x)}=\infty limα(x)β(x)=

无穷大量的比较

(1)当 x → + ∞ x \rightarrow+\infty x+时, ln ⁡ α x ≪ x β ≪ a x \ln ^{\alpha} x \ll x^{\beta} \ll a^{x} lnαxxβax (其中 α > 0 , β > 0 , a > 1 \alpha>0, \beta>0, a>1 α>0,β>0,a>1 )

(2)当 n → ∞ n \rightarrow \infty n时, ln ⁡ α n ≪ n β ≪ a n ≪ n ! ≪ n n \ln ^{\alpha} n \ll n^{\beta} \ll a^{n} \ll n ! \ll n^{n} lnαnnβann!nn (其中 α > 0 , β > 0 , a > 1 \alpha>0, \beta>0, a>1 α>0,β>0,a>1 ).

记住上面的式子可以快速判断出比值是否为0

2.3 等量无穷小

x趋于0时成立

 (1)  x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1  (2)  1 − cos ⁡ a x ∼ a 2 x 2 ;  (3)  ( 1 + x ) a − 1 ∼ a x ;  (4)  a x − 1 ∼ x ln ⁡ a  (5)  sec ⁡ 2 x − 1 = tan ⁡ 2 x = ? s i n 2 x 1 = 1 − cos ⁡ 2 x = x 2 \begin{array}{l}\text { (1) } x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^{x}-1 \\ \text { (2) } 1-\cos^{a} x \sim \frac{a}{2}x^{2}; \\ \text { (3) }(1+x)^{a}-1 \sim a x ; \\ \text { (4) } a^{x}-1 \sim x \ln a \\ \text{ (5) } \sec^2 x - 1 = \tan^2 x = ?\frac{sin^2 x}{1} = 1-\cos^2x = x^2\end{array}  (1) xsinxtanxarcsinxarctanxln(1+x)ex1 (2) 1cosax2ax2; (3) (1+x)a1ax; (4) ax1xlna (5) sec2x1=tan2x=?1sin2x=1cos2x=x2

(3)的推广

​ 当 x → 0 x \rightarrow0 x0时, ( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}-1\sim \alpha x (1+x)α1αx,这个结论推广可得,若 α ( x ) → 0 , α ( x ) β ( x ) → 0 \alpha(x) \rightarrow0, \alpha(x) \beta(x) \rightarrow0 α(x)0,α(x)β(x)0,则有
( 1 + α ( x ) ) β ( x ) − 1 ∼ α ( x ) β ( x ) (1+\alpha(x))^{\beta(x)}-1\sim \alpha(x) \beta(x) (1+α(x))β(x)1α(x)β(x)。如x趋于0时, ( 1 + x ) x − 1 ∼ x 2 (1+x)^x-1 \sim x^2 (1+x)x1x2

若$ \lim \alpha(x)=0, \lim \beta(x)=\infty , 且 ,且 , \lim \alpha(x) \beta(x)=A $,则
lim ⁡ [ 1 + α ( x ) ] β ( x ) = e A \lim [1+\alpha(x)]^{\beta(x)}=e^{A} lim[1+α(x)]β(x)=eA A是常数或要是存在?

三阶 (记忆方法:3阶,x取反三角arc,右边不变,也可结合三角函数图像)

x − ln ⁡ ( 1 + x ) ∼ x 2 2 x-\ln (1+x) \sim \frac{x^{2}}{2} xln(1+x)2x2

$ x-\sin x \sim \frac{x^{3}}{6} \quad \arcsin x-x \sim \frac{x^{3}}{6} $

$ \tan x-x \sim \frac{x^{3}}{3} \quad x-\arctan x \sim \frac{x^{3}}{3}$

积分替换进阶

​ f(x)和g(x)在 x=a 的某邻域内连续且 limx->a f(x)/g(x) = 1,则有 ∫axf(t)dt = ∫axg(t)dt。如当x趋于0时, ∫ 0 x ( 1 + t ) 1 / t d t ∼ ∫ 0 x e d t = x e \int^x_0(1+t)^{1/t}dt \sim \int^x_0edt=xe 0x(1+t)1/tdt0xedt=xe,$\int^x_0 \ln(1+t)dt = \int^x_0tdt \sim \frac{1}{2}t^2 , , \intx_0etdt \sim \int^x_0 1dt$

存疑武18强化时的一道题:用积分替换进阶时候若被积函数不不趋于0,一般不替换?,如cos x2 不替换为1- x4/2,不过替换后好像答案也没错,1是低阶0阶。

代换原则

​ 如果lim(A-B),limA,limB都存在,(极限存在隐含着极限值不为无穷),那么有lim(A-B) = limA - limB。

​ 整体上是乘除可用等量变换,不能在指数的内部去换,加减在 不等价的条件 下可用等量变化。本质上还是精度的问题,因为本来加减后不等于0,若替换后值为0就不对了。

若$ \alpha \sim \alpha_{1} $, $ \beta \sim \beta_1 , 且 ,且 , \lim \frac{\alpha_{1}}{\beta_{1}}=A \neq1 . 则 .则 . \alpha -\beta \sim \alpha_{1}-\beta_{1} $,如x趋于0时, tan x - sin x 不能等价于 x-x=0 ,而应该用”三阶“ tan x - x + x-sin x

若$ \alpha \sim \alpha_{1} $, $ \beta \sim \beta_1 , 且 ,且 , \lim \frac{\alpha_{1}}{\beta_{1}}=A \neq -1 . 则 .则 . \alpha + \beta \sim \alpha_{1}+\beta_{1} $,如x趋于0时,x+sin x 等价于 x+x = 2x

注意

​ 等量/等价并不是 等于,详细可以看下面的文章和视频,等价无穷小的本质是约分。

https://zhuanlan.zhihu.com/p/62029838

https://www.bilibili.com/video/BV1ba4y1Y7TJ/

错误实例

​ 换元 同阶等量替换未必正确,精度的问题。下面写一种错误的替换方法,因为右两式值都不存在所以不能拆开,正确做法是 x-sinx = x^3/6。如果遇到复杂的可以加减其他变量凑出麦克劳林如tan x - sin x = (tan x-x) - (sin x-x)

lim ⁡ x → 0 x − sin ⁡ x x 3 ≠ lim ⁡ x → 0 x x 3 − lim ⁡ x → 0 sin ⁡ x x 3 \lim_{x \rightarrow0} \frac{x-\sin x}{x^{3}} \neq \lim_{x \rightarrow0} \frac{x}{x^{3}}-\lim_{x \rightarrow0} \frac{\sin x}{x^{3}} limx0x3xsinx=limx0x3xlimx0x3sinx

2.4 阶的比较

常用方法:两两比、除以xk定阶数、估阶 、洛必达、等价无穷小替换、泰勒公式

结论

(积分一次提高一阶所以(m+1),当上限g(x)是n阶时,得n(m+1))

​ 若$ {f(x)} 在 在 x=0 的某邻域内连续 , 且当 的某邻域内连续,且当 的某邻域内连续,且当 x \rightarrow0 时 时 {f(x)} 是 是 x 的 的 m $阶无穷小, $ \varphi(x) 是 是 x 的 的 n 阶无穷小 , 则当 阶无穷小,则当 阶无穷小,则当 x \rightarrow0$时, $ {F(x)}=\int_{0}^{\varphi(x)} {f(t)} d t 是 是 x 的 的 n(m+1) $阶无穷小)。

​ 如 x → 0 + ∫ 0 x cos ⁡ t 2 d t x\rightarrow0^+ \int^x_0 \cos t^2 dt x0+0xcost2dt的阶数为n(m+1) = 1(0+1) = 1。若下限不为0,则拆分为2个积分相加,低阶决定最终阶数如x2+x4为2阶

​ 如$\int_{0}^{1-\cos x} e^{x t} \sin t^{2} d t = e^{x \xi} \int_{0}^{1-\cos x} \sin t^{2} d t = \int_{0}^{1-\cos x} \sin t^{2} d $,1-cos x 是2阶,sint2是2阶段,积分一次加1阶段,因此2*(2+1)=6阶。

【例题】880 第三章综合题选做题8

【】2020

结论

​ f(x)在x=a处可导,且在a附近是n阶无穷小,则f’(x)是n-1阶无穷小。

2.5 其他不等式

常见的不等式

x x + 1 < l n ( 1 + x ) < x < e x − 1 \frac{x}{x+1}<ln{(1+x)} < x < e^x - 1 x+1x<ln(1+x)<x<ex1 (拉格朗日可证)

( 1 + 1 n ) n < e < 1 + 1 n ) n + 1 (1+\frac{1}{n})^n < e < 1+\frac{1}{n})^{n+1} (1+n1)n<e<1+n1)n+1

image-20210918190745177

​ 也可以从 令(sin x)’ = cos x = 1 得x=0 ;(tan x)’ = sec^2(x) = (1/cos x)^2 ≥1 得出关系(导数+图形结合)

三 其他

3.1 连续与间断

左右极限存在且与该点相等,则该点连续

image-20210324223219136

性质

  • 初等函数在其定义区间内连续
  • 连续函数的复合函数仍为连续函数
  • 连续分母必然不为0

找不连续点

​ 分母为0、初等函数处处连续、分子分母同时乘以一个数时要注意分母本身不能是0否则会漏间断点、注意若是偶函数,在相对的点间断点类型相同。

3.2 两类间断点

间断点定义

​ 若f(x)在x0某去心邻域有定义,但 lim ⁡ x → a f ( x ) ≠ f ( a ) \lim_{x \rightarrow a} {f(x)} \neq {f(a)} limxaf(x)=f(a),称 f ( x ) {f(x)} f(x) x = a x=a x=a处不连续,且 x = a x=a x=a f ( x ) {f(x)} f(x)的间断点

第一类间断点 f(a-0),f(a+0)左右极限都存在

  • 可去间断点 (左极限 == 右极限)

​ 不连续点两侧函数的极限存在且相等。即f(a-0) = f(a+0) != f(a),a点无定义或值是其他

  • 跳跃间断点 (左极限 不== 右极限)

​ 不连续点两侧函数的极限存在但不等。即f(a-0) != f(a+0)

第二类间断点

​ 左右极限有至少有一个不存在(可能都不存在)。无穷间断点【如 1/x】、振荡间断点【sin 1/x】、…等等

总结

类别特点
第一类间断点左右极限存在
可去间断点左右极限存在且相等
跳跃间断点左右极限存在且不等
第二类间断点左右极限有至少有一个不存在(可能都不存在)

​ 说明是第一类间断点时要明确类型、第二类间断点不需要明确类型。

找无定义点

3.3 四大定理

最值定理

​ 若 f ( x ) ∈ C [ a , b ] {f(x)} \in C[a, b] f(x)C[a,b],则 f ( x ) {f(x)} f(x) [ a , b ] [a, b] [a,b]上一定存在最小值和最大值.

有界定理

​ 若 f ( x ) ∈ C [ a , b ] {f(x)} \in C[a, b] f(x)C[a,b],则 f ( x ) {f(x)} f(x) [ a , b ] [a, b] [a,b]上一定有界

​ 若 f ( x ) ∈ C ( a , b ) {f(x)} \in C(a, b) f(x)C(a,b),则 f ( x ) {f(x)} f(x) ( a , b ) (a, b) (a,b)上不一定有界,如1/x

​ (命题点)若 f ( x ) ∈ C ( a , b ) {f(x)} \in C(a, b) f(x)C(a,b),且f(a+)存在、f(b-)存在,则 f ( x ) {f(x)} f(x) ( a , b ) (a, b) (a,b)上一定有界

​ 若 f ′ ( x ) {f'(x)} f(x)有限区间内有界,则 f ( x ) {f(x)} f(x)在该区间内有界。反之不对如f(x)=x1/2

零点定理

​ 若 f ( x ) ∈ C [ a , b ] , f ( a ) f ( b ) < 0 {f(x)} \in C[a, b],{f(a)} {f(b)}<0 f(x)C[a,b],f(a)f(b)<0,则存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b),使得 f ( ξ ) = 0 {f(\xi)}=0 f(ξ)=0

介值定理

​ 若 f ( x ) ∈ C [ a , b ] {f(x)} \in C[a, b] f(x)C[a,b],对任意的 η ∈ [ m , M ] \eta \in[m, M] η[m,M],存在 ξ ∈ [ a , b ] \xi \in[a, b] ξ[a,b],使得 f ( ξ ) = η {f(\xi)}=\eta f(ξ)=η

C[a,b] : 在[a,b]上连续

3.4 洛必达法则

由柯西定理证出

image-20210920092909050

​ n阶可导,则洛必达至多使用到n-1阶;n阶连续可导,则洛必达可用到n阶。

​ 把极限转换为0比0或无穷比无穷即可使用洛必达,要注意洛必达后得出的值需要存在或无穷。

​ 洛之前存在,洛之后未必存在。2022数一第一题

3.5 求导法则

线性法则 : d ( M f ) d x = M d f   d x ; [ M f ( x ) ] ′ = M f ′ ( x ) d ( f ± g ) d x = d f   d x ± d g   d x 乘法法则 : d f g   d x = d f   d x g + f d g   d x 除法法则 : d f g   d x = d f   d x g − f d g   d x g 2 ( g ≠ 0 ) 倒数定则 d 1 g   d x = − d g   d x g 2 ( g ≠ 0 ) 复合函数求导法则 ( 连锁定则 ) ( f ∘ g ) ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) . d f [ g ( x ) ] d x = d f ( g ) d g d g   d x = f ′ [ g ( x ) ] g ′ ( x ) \begin{aligned}& 线性法则: \\ &\frac{\mathrm{d}(M f)}{\mathrm{d} x}=M \frac{\mathrm{d} f}{\mathrm{~d} x} ; \quad[M {f(x)}]^{\prime}=M f^{\prime}(x) \\ &\frac{\mathrm{d}(f \pm g)}{\mathrm{d} x}=\frac{\mathrm{d} f}{\mathrm{~d} x} \pm \frac{\mathrm{d} g}{\mathrm{~d} x}\\ & 乘法法则: \\ &\frac{\mathrm{d} f g}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} x} g+f \frac{\mathrm{d} g}{\mathrm{~d} x}\\ & 除法法则:\\ &\frac{\mathrm{d} \frac{f}{g}}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} f}{\mathrm{~d} x} g-f \frac{\mathrm{d} g}{\mathrm{~d} x}}{g^{2}} \quad(g \neq0)\\ &倒数定则 \\ &\frac{\mathrm{d} \frac{1}{g}}{\mathrm{~d} x}=\frac{-\frac{\mathrm{d} g}{\mathrm{~d} x}}{g^{2}} \quad(g \neq0)\\ &复合函数求导法则(连锁定则)\\ &(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) . \\ &\frac{\mathrm{d} f[g(x)]}{\mathrm{d} x}=\frac{\mathrm{d} {f(g)}}{\mathrm{d} g} \frac{\mathrm{d} g}{\mathrm{~d} x}=f^{\prime}[g(x)] g^{\prime}(x) \end{aligned} 线性法则:dxd(Mf)=M dxdf;[Mf(x)]=Mf(x)dxd(f±g)= dxdf± dxdg乘法法则: dxdfg= dxdfg+f dxdg除法法则: dxdgf=g2 dxdfgf dxdg(g=0)倒数定则 dxdg1=g2 dxdg(g=0)复合函数求导法则(连锁定则)(fg)(x)=f(g(x))g(x).dxdf[g(x)]=dgdf(g) dxdg=f[g(x)]g(x)

三次方公式

1、(a+b)³=a³+3a²b+3ab²+b³

2、(a-b)³=a³-3a²B+3ab²-b³

3、a³+b³=(a+b)(a²-ab+b²)

4、a³-b³=(a-b)(a²+ab+b²)

四 求极限

4.1 函数极限

方法总览

  • 四则运算法则、基本极限替换、等量无穷小替换
  • 分式有理化、分子分母同时除以“老大”【抓大头有时候不一定对慎用特别是复合时候】、提复杂但可算的因式
  • 麦克劳林【注意精度】、洛必达【洛后不存在不能说明之前不存在660 136】、中值定理(拉格或者积分[一般提非0])
  • 夹逼准则(放大缩小,次量级等于主体时候难夹)
  • 定积分(n项和)、无穷级数、
  • 单调有界准则

0比0型:u(x)v(x) = ev(x) ln u(x) 、ln(1+x)~x、ex - 1 ~ x、x和sin x、tanx、arcsinx、arctanx中任意两个函数之差为三阶无穷小

1型:凑 ( 1 + x ) 1 x (1+x)^{\frac{1}{x}} (1+x)x1, 使用 ( 1 + α ( x ) ) β ( x ) ∼ e α ( x ) β ( x ) (1+\alpha(x))^{\beta(x)}\sim e^{\alpha(x) \beta(x)} (1+α(x))β(x)eα(x)β(x)

其他型:0 * ∞,∞-∞,00,∞0等,可考虑幂指函数

lim ⁡ x → 0 + x ln ⁡ x = l n x 1 / x = 1 / x − 1 / x 2 = 0 \lim_{x\rightarrow 0^+} x \ln x = \frac{ln x}{1/x} = \frac{1/x}{-1/x^2} = 0 limx0+xlnx=1/xlnx=1/x21/x=0,推论 lim ⁡ x → 0 + x a ln ⁡ b x = 0 \lim_{x \rightarrow 0^+} x^a \ln^b x = 0 limx0+xalnbx=0 其中 a>0,b>0

总的来说:

​ 优先等量无穷小替换【注意替换条件】,尝试加减项后等量替换,

​ 有积分看看积分中值定理或2.3积分替换进阶,有相减的想想拉格朗日、

​ 不常见的或项比较多的考虑麦克劳林消去部分x

​ 除以“老大”、有根号的试试先有理化、分子0倒一下变分母为∞、幂指化(3)、看到三角函数想三阶

​ 式子不算复杂的洛必达法【注意适用的条件】

不能二次极限,即先求一部分再

4.2 数列极限

n取只整数

转为函数极限、连乘时常用取对数化为加法

求递推关系的数列极限 x 1 = a , x n + 1 f ( x n ) ( n = 1 , 2 , . . . ) x_1 = a, x_{n+1}f(x_n)(n=1,2,...) x1=a,xn+1f(xn)(n=1,2,...)

常用方法

  • 法一:证{xn}收敛【单调+有界】, x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn),取极限得A=f(A)
  • 法二:先令 lim xn = A,两端取极限得出A,再证明 lim xn = A

判断单调的方法

  • 前项-后项、(不变号前提下)比值法、
  • 看f(x)的单调
    • f(x)单增,x1 < x2,则{Xn}单增,反之单减;
    • f(x)单调减可推出{Xn}不单调 【如x1 < x2, x2=f(x1)>x3=f(x2)】,用方法二

【例题】2018数一

4.3 含参极限

​ 通过求极限得出,可能在过程中得到部分参数

观察式子的数值,确定部分参数的可能取值范围,考虑无穷小替换、泰勒展开

高阶 除以 低阶 == 0 两式等价即比值为1

五 基础例题

5.1 求系数

思想:存在 + 存在 == 存在,目标是找出式子中的存在

 设  f ( x ) = { arctan ⁡ 3 x + e a x − 1 x , x < 0 , 2 , x = 0   ( 1 + sin ⁡ x ) tan ⁡ 5 x − 1 x arcsin ⁡ x , x > 0 , 且 lim ⁡ x → 0 f ( x ) 存在,求 a 的值 \text { 设 } {f(x)}=\left\{\begin{array}{l}\frac{\arctan 3 x+\mathrm{e}^{ax}-1}{x}, x<0, \\ 2, \quad x=0 \text { } \\ \frac{(1+\sin x)^{\tan 5x}-1}{x \arcsin x}, x>0,\end{array}\right.且\lim_{x \rightarrow 0}f(x)存在,求a的值   f(x)= xarctan3x+eax1,x<0,2,x=0 xarcsinx(1+sinx)tan5x1,x>0,limx0f(x)存在,求a的值

image-20210919102629668

5.2 求极限

拆分法

  1. 通分

image-20210918160033855

  1. 三角里套三角则令三角=t

image-20210918162107630

  1. 麦克劳林展开也可以

image-20210918162335125

  1. 分子因式分解

image-20210918190406579

麦克劳林

回顾一下常见的公式
直接法(x0=0时,麦克劳林,直接写泰勒级数,考察余项R(n)=0是否成立)

1 1 − x = 1 + x + x 2 + ⋯ + x n + ⋯ = ∑ n = 0 ∞ x n \frac{1}{1-x}=1+x+x^2+\cdots+x^n+\cdots=\sum_{n=0}^{\infty} x^n 1x1=1+x+x2++xn+=n=0xn

1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x n \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+\cdots=\sum_{n=0}^{\infty}(-1)^n x^n 1+x1=1x+x2+(1)nxn+=n=0(1)nxn

ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + o ( x 2 ) = ∫ 1 1 + x d x   x ∈ ( − 1 , 1 ] \ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+o\left(x^{2}\right) = \int \frac{1}{1+x}dx \ x \in (-1,1] ln(1+x)=n=0n+1(1)nxn+1=x21x2+o(x2)=1+x1dx x(1,1]

− l n ( 1 − x ) = ∑ n = 0 ∞ x n + 1 n + 1 = x + 1 2 x 2 + o ( x 2 ) = ∫ 1 1 − x d x   x ∈ [ − 1 , 1 ) -ln (1-x)=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} =x+\frac{1}{2} x^{2}+o\left(x^{2}\right) = \int \frac{1}{1-x}dx \ x \in [-1,1) ln(1x)=n=0n+1xn+1=x+21x2+o(x2)=1x1dx x[1,1)

e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 + ⋯ + x n n ! + o ( x n ) e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right) ex=n=0n!xn=1+x+2x2++n!xn+o(xn)

sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + . . . + ( − 1 ) 2 ( 2 n + 1 ) ! x 2 n + 1 \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{x^{3}}{3!}+... +\frac{(-1)^2}{(2n+1)!}x^{2n+1} sinx=n=0(2n+1)!(1)nx2n+1=x3!x3+...+(2n+1)!(1)2x2n+1

cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + o ( x 2 ) = s i n ′ x \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2!} x^{2}+o\left(x^{2}\right) = sin' x cosx=n=0(2n)!(1)nx2n=12!1x2+o(x2)=sinx

( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) x ∈ ( − 1 , 1 ) (1+x)^{\alpha}=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+o\left(x^{2}\right) x \in (-1,1) (1+x)α=1+n=1n!α(α1)(αn+1)xn=1+αx+2!α(α1)x2+o(x2)x(1,1)

arctan ⁡ x = x − 1 3 x 3 + x 5 5 + . . . + ( − 1 ) n 2 n + 1 x 2 n + 1 + o ( x 3 ) \arctan x=x-\frac{1}{3} x^{3}+\frac{x^5}{5}+...+\frac{(-1)^n}{2n+1}x^{2n+1} + o\left(x^{3}\right) arctanx=x31x3+5x5+...+2n+1(1)nx2n+1+o(x3)

tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) \tan x=x+\frac{1}{3} x^{3}+o\left(x^{3}\right) tanx=x+31x3+o(x3)

arcsin ⁡ x = x + 1 6 x 3 + o ( x 3 ) \arcsin x=x+\frac{1}{6} x^{3}+o\left(x^{3}\right) arcsinx=x+61x3+o(x3)

image-20210918170832075

变积分限

首先需要把常数从变量中分离出来,同时改变积分限

image-20210918172618463

  1. 此题变量不带常数,不需要变积分限,熟悉麦克劳林公式即可

image-20210919101149782

凑1+Δ

image-20210918190251005

  1. 凑(1+x)a - 1 = ax

image-20210325205321816

中值定理

式子中有形如f(x)与f(x+a)

  1. 拉格朗日

image-20210918194838833

  1. 两次中值

image-20210919095036127

其他类型

  1. 约分型 上下除以x,保证精度不丢失,需要注意符号

image-20210918190925655

  1. 约分型 化无穷为0/0

image-20210919150305081

  1. 凑定型、凑导数定义、正常极限提取、完全平方差、三角转换、对数(化除为减,化乘为加)

5.3 n项和或积

思路:

  • 先计算和/积再计算极限
  • 夹逼定理(分子/分母不齐次时候)
  • 定积分定义(分子分母都齐次)
  1. sin 2x = 2 * sinx * cosx 注意是n趋于∞,x当作常量

image-20210918191512848

定积分

image-20210918191555227

image-20210918192006834

迫敛性

image-20210919110318415

5.4 存在性问题

思路:

image-20210918192317913

  1. 存在递推关系 单调+有界

image-20210918192550936

image-20220506225226482

5.5 含参极限

5.6 间断点

image-20210324232041327

image-20210324235033506

image-20210325194939378

  1. 极限的定义

image-20210325205233777

image-20210325211507608

image-20210325214552888

6.2 基础

熟练使用麦克劳林公式

  1. 分离定型【代入后能确定极限是个常数】与不定型

image-20210330175820917

image-20210330175745834

  1. 令三角=t,拆分

image-20210330180605649

image-20210330182523918

image-20210330185533588

image-20210330201749105

image-20210330210912345

image-20210331133033899

6.3 提高

  1. 三角变换

image-20210920095349737

  1. 拼凑拆分+麦克劳林

image-20210920100646661

  1. 正常极限可提取,极限存在可相加

image-20210920103525179

  1. u(x)^(v(x)) = e^{v(x)ln(u(x))}

image-20210920112108224

一些解释

https://tieba.baidu.com/p/6123154689#125500795468l

  1. 三角变换 tan 化 cot

image-20210920214226422

  1. 化乘为加—对数

image-20210921092959116

  1. 化除为减—对数

image-20210921093224570

  1. 1的∞型

image-20210921095619739

  1. 极限内放

image-20210925153240043

反函数图像的举例,单调一定有反?反一定单调?单射

f-1[f(x)] = x

双曲正弦

反例的积累

常考:极限概念性质及存在准则、求极限、无穷小量阶比较

疑问题目

1 洛必达的错误使用

image-20220426151944428

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值