文章目录
一 极限
1.1 定义
数列极限
lim n → ∞ x n = a : ∀ ϵ > 0 , ∃ N ( ϵ ) > 0 , 当 n > N 时,有 ∣ x n − a ∣ < ϵ \lim_{n \rightarrow \infty} x _ { n } = a : \forall { \epsilon } > 0,\exists N(\epsilon) > 0,当n > N时,有| x _ { n } - a | < \epsilon limn→∞xn=a:∀ϵ>0,∃N(ϵ)>0,当n>N时,有∣xn−a∣<ϵ
注意
- 与前面的有限项无关
- 若原数列极限存在则子奇、偶列极限存在且相等
- 只有有限个(最多N个)点 在区间 ( a − ϵ , a + ϵ ) (a-\epsilon,a+\epsilon) (a−ϵ,a+ϵ)之外
- 数列极限是函数极限的一种、定义中绝对值小于ε,即可能等于0
- 数列极限中n是下标,默认为趋于正无穷,数列中前面的项是有限个的,那么在前面一定有一个最大值。
函数极限
自变量趋于±无穷时
lim x → ∞ f ( x ) = A : ∀ ϵ > 0 , ∃ X > 0 , 当 ∣ x ∣ > X 时,有 ∣ f ( x ) − A ∣ < ϵ \lim_{ x\rightarrow \infty } {f ( x )} = A : \forall{ \epsilon } > 0 , \exists X > 0,当| x | > X 时,有| {f ( x )} - A | < \epsilon limx→∞f(x)=A:∀ϵ>0,∃X>0,当∣x∣>X时,有∣f(x)−A∣<ϵ
自变量趋于有限值时
lim x → x 0 f ( x ) = A : ∀ ϵ > 0 , ∃ X > 0 , 当 0 < ∣ x − x 0 ∣ < ϵ 时 , 有 ∣ f ( x ) − A ∣ < ϵ \operatorname* { lim } _ { x \rightarrow x_0 } \ {f ( x )} = A :\forall { \epsilon } > 0 , \exists X > 0,当 0 < | x - x _ { 0 } | < \epsilon时,有| {f ( x )} - A | < \epsilon limx→x0 f(x)=A:∀ϵ>0,∃X>0,当0<∣x−x0∣<ϵ时,有∣f(x)−A∣<ϵ
注意
- 极限值与x=x0这点的函数值无关联
- 函数极限x趋于∞指的是 |x| 趋于正无穷,数列极限中n趋于无穷是指n趋于正无穷
- 函数极限自变量是趋于有限值而不等于有限值、极限存在与否和在x0是否有定义无关(可能是间断点)
极限存在的充要条件是 左右极限都存在且相等
1.2 性质
性质 | 解析 |
---|---|
唯一性 | 极限若存在,则极限一定唯一 |
保号性 | 存在去心邻域使得f(x)同号,延申出保序性,注意极限=0时 |
有界性 | 极限的去心邻域内有界 |
子列 | 极限存在则任一子列存在相同极限,反之不对 |
保号性(武2023强化E02)(下面的1A≥B对应上面的1,B取0,gx取0时不成立)660 125题
四则运算性质
若有一个极限不存在则运算性质不成立,若
lim
f
(
x
)
=
A
,
lim
g
(
x
)
=
B
\lim {f(x)}=A, \lim g(x)=B
limf(x)=A,limg(x)=B,那么:
lim
(
f
(
x
)
±
g
(
x
)
)
=
lim
f
(
x
)
±
lim
g
(
x
)
lim
(
f
(
x
)
⋅
g
(
x
)
)
=
lim
f
(
x
)
⋅
lim
g
(
x
)
lim
(
f
(
x
)
g
(
x
)
)
=
lim
f
(
x
)
lim
g
(
x
)
(
B
≠
0
)
\begin{aligned} &\lim ({f(x)} \pm g(x))=\lim {f(x)} \pm \lim g(x) \\ &\lim ({f(x)} \cdot g(x))=\lim {f(x)} \cdot \lim g(x) \\ &\lim \left(\frac{{f(x)}}{g(x)}\right)=\frac{\lim {f(x)}}{\lim g(x)}(B \neq0) \end{aligned}
lim(f(x)±g(x))=limf(x)±limg(x)lim(f(x)⋅g(x))=limf(x)⋅limg(x)lim(g(x)f(x))=limg(x)limf(x)(B=0)
注意
- 存在±不存在 = 不存在,其他均不一定
- 极限非零的因子的极限可以先求出
- 和的极限 等于 极限的和 条件是有限项
复合运算性质
注解(看“老大”,原理是分子分母同时除以老大)
P
(
x
)
=
a
0
x
n
+
a
1
x
n
−
1
+
⋯
+
a
n
−
1
x
+
a
n
,
Q
(
x
)
=
b
0
x
m
+
b
1
x
m
−
1
+
⋯
+
b
n
−
1
x
+
b
m
,
其中
a
0
b
0
≠
0
则
lim
x
→
∞
P
(
x
)
Q
(
x
)
=
{
a
0
b
0
,
m
=
n
,
0
,
m
>
n
,
∞
,
m
<
n
.
\begin{aligned} &P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}, \\&Q(x)=b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{n-1} x+b_{m}, \text {其中} a_{0} b_{0} \neq0 \\&则\lim_{x \rightarrow \infty} \frac{P(x)}{Q(x)}= \begin{cases}\frac{a_{0}}{b_{0}}, & m=n, \\0, & m>n, \\ \infty, & m<n .\end{cases} \end{aligned}
P(x)=a0xn+a1xn−1+⋯+an−1x+an,Q(x)=b0xm+b1xm−1+⋯+bn−1x+bm,其中a0b0=0则x→∞limQ(x)P(x)=⎩
⎨
⎧b0a0,0,∞,m=n,m>n,m<n.
x趋于正无穷时,老大是xn
x趋于0时,“老大”是低次项,看最低次。
夹逼定理/迫敛定理
注解
1.3 重要极限
6个重要极限
1. lim x → 0 sin x x = 1 2. lim x → 0 ( 1 + x ) 1 x = e 3. lim x → 0 + x x = 1 4. lim x → + ∞ x 1 x = 1 5. lim x → 0 + ( 1 + 1 x ) x = 1 6. lim x → + ∞ ( 1 + x ) 1 x = 1 \begin{aligned} 1. & \lim_{x \rightarrow 0}\frac{\sin x}{x} = 1 \\ 2. & \lim_{x \rightarrow 0}(1+x)^{^\frac{1}{x}} = e \\ 3. & \lim_{x \rightarrow 0+} x^x = 1 \\ 4. & \lim_{x \rightarrow +\infty}x^{\frac{1}{x}} = 1 \\ 5. & \lim_{x \rightarrow 0^+} (1+\frac{1}{x})^x=1 \\ 6. & \lim_{x \rightarrow +\infty} (1+x)^{\frac{1}{x}}=1 \\ \end{aligned} 1.2.3.4.5.6.x→0limxsinx=1x→0lim(1+x)x1=ex→0+limxx=1x→+∞limxx1=1x→0+lim(1+x1)x=1x→+∞lim(1+x)x1=1
趋向于0而不等于0,注意有两个方向趋于0
(1)的深入
注意是函数的极限,x是趋于0而不能等于0,当x=tsin(1/t)时,当t=Π/n时,x=0,不符合定义,因此 sin ( x sin 1 x ) x sin 1 x ≠ 1 \frac{\sin(x\sin \frac{1}{x})}{x\sin \frac{1}{x}} \neq 1 xsinx1sin(xsinx1)=1,有无定义点,因此是极限不存在。
(2)的推广
若
lim
α
(
x
)
=
0
,
lim
β
(
x
)
=
∞
\lim \alpha(x)=0, \lim \beta(x)=\infty
limα(x)=0,limβ(x)=∞,且
lim
α
(
x
)
β
(
x
)
=
A
\lim \alpha(x) \beta(x)=A
limα(x)β(x)=A,则
lim
[
1
+
α
(
x
)
]
β
(
x
)
=
e
A
\lim [1+\alpha(x)]^{\beta(x)}=\mathrm{e}^{A}
lim[1+α(x)]β(x)=eA A一定是要存在且为常数吗?
证明
e lim x → 0 + x ln x = e lim x → 0 + ln x 1 x = e lim x → 0 + 1 x 1 − x 2 = 1 \begin{aligned} e^{\lim_{x \rightarrow 0+}x\ln x} = e^{\lim_{x \rightarrow 0+}\frac{\ln x}{\frac{1}{x}}} = e^{\lim_{x \rightarrow 0+}\frac{\frac{1}{x}}{\frac{1}{-x^2}}} = 1 \end{aligned} elimx→0+xlnx=elimx→0+x1lnx=elimx→0+−x21x1=1
令 1 x = t 则当 x → + ∞ 时 , t → 0 + e lim t → 0 + t ln 1 t = e lim t → 0 + ln 1 t 1 t = 1 令\frac{1}{x} = t 则当x\rightarrow+\infty时,t \rightarrow 0+ \\ e^{\lim_{t \rightarrow 0+}t \ln{\frac{1}{t}}} = e^{\lim_{t \rightarrow 0+}\frac{\ln{\frac{1}{t}}}{\frac{1}{t}}} = 1 令x1=t则当x→+∞时,t→0+elimt→0+tlnt1=elimt→0+t1lnt1=1
5.
lim
x
→
0
+
e
x
ln
(
1
+
1
x
)
=
e
lim
x
→
0
+
ln
(
1
+
1
/
x
)
1
/
x
=
e
0
=
1
\lim _{x \rightarrow 0^+}e^{x \ln{(1+\frac{1}{x})}} = e^{\lim _{x \rightarrow 0^+}\frac{\ln (1+1/x)}{1/x}} = e^0=1
x→0+limexln(1+x1)=elimx→0+1/xln(1+1/x)=e0=1
1.4 单调数列
单调递增
数列无上界,则极限=+∞
数列有上界,则存在M使得极限≤M
单调递减
数列无下界,则极限=-∞
数列有下界,则存在N使得极限≥N
一个小结论
设 a 1 , a 2 , . . . a n > 0 , 则 lim n → ∞ a 1 n + a 2 n + . . . + a n n n = max ( a 1 , a 2 , . . . a n ) a_1,a_2,...a_n >0,则\lim_{n \rightarrow \infty}\sqrt[n]{a_1^n+a_2^n+...+a_n^n} = \max({a_1,a_2,...a_n}) a1,a2,...an>0,则limn→∞na1n+a2n+...+ann=max(a1,a2,...an)
如 lim n → ∞ ( 1 + x n + ( x 2 2 ) n ) 1 / n = m a x ( 1 、 x 、 x 2 2 ) , x > 0 \lim_{n \rightarrow \infty}(1+x^n+(\frac{x^2}{2})^n)^{1/n} = max{(1、x、\frac{x^2}{2})} ,x>0 limn→∞(1+xn+(2x2)n)1/n=max(1、x、2x2),x>0
几何平均
单调有界数列必有极限即收敛,注意并不要求从首项开始。
【例题】2018数一
二 无穷量
2.1 定义
无穷小
若 f ( x ) {f ( x )} f(x)当 x → x 0 x \rightarrow x_{ 0 } x→x0或 ( x → ∞ ) ( x \rightarrow \infty ) (x→∞)时的极限为零,则称 f ( x ) {f ( x )} f(x)为 x → x 0 x \rightarrow x _ { 0 } x→x0或 ( x → ∞ ) ( x \rightarrow \infty ) (x→∞)时的无穷小。
无穷大
若 lim x → x 0 f ( x ) = ∞ \lim_{x \rightarrow x_{0}} {f(x)}=\infty limx→x0f(x)=∞ (或 lim x → ∞ f ( x ) = ∞ \lim_{x \rightarrow \infty} {f(x)}=\infty limx→∞f(x)=∞ ),则称 f ( x ) {f(x)} f(x)为 x → x 0 x \rightarrow x_{0} x→x0 (或 x → ∞ x \rightarrow \infty x→∞ )时的无穷大(可正可负)
无穷大与无界
数列 { x n } \left\{x_{n}\right\} {xn}是无穷大量: ∀ M > 0 , ∃ N \forall M>0, \exists N ∀M>0,∃N,当 n > N n>N n>N 时,恒有 ∣ x n ∣ > M \left|x_{n}\right|>M ∣xn∣>M
数列 { x n } \left\{x_{n}\right\} {xn}是无界变量: ∀ M > 0 , ∃ N \forall M>0, \exists N ∀M>0,∃N,使得 ∣ x N ∣ > M \left|x_{N}\right|>M ∣xN∣>M
注意
- 无穷小意味着极限为零而非负无穷,无穷大可以是正无穷也可以是负无穷
- 无穷大量一定是无界变量;但无界变量不一定是无穷大量。无穷大量包含无界变量,一个是恒有,一个是存在。
- 无穷大量相乘一定是无穷大量,而无界变量相乘不一定是无界变量,如错位(1 0 3 0,…;0 2 0 4…)
发散主要是和收敛对应的。无穷大肯定就发散了,无界也发散了。但发散不一定无穷大,发散不一定无界,发散只是不收敛。
2.2 性质
无穷小
- 有限个无穷小 的和、差、积 仍为无穷小
- 常数或有界量与无穷小之积仍是无穷小
无穷大
- 平时说的无穷大是指绝对值无穷,-∞也是无穷大
- 无穷大与有界量之积是不定
无穷小量的比较
(1)高阶:若
lim
β
(
x
)
α
(
x
)
=
0
\lim \frac{\beta(x)}{\alpha(x)}=0
limα(x)β(x)=0,记为
β
(
x
)
=
o
(
α
(
x
)
)
\beta(x)=o(\alpha(x))
β(x)=o(α(x));
(2)同阶:若
lim
β
(
x
)
α
(
x
)
=
C
≠
0
\lim \frac{\beta(x)}{\alpha(x)}=C \neq0
limα(x)β(x)=C=0;
(3)等价:若
lim
β
(
x
)
α
(
x
)
=
1
\lim \frac{\beta(x)}{\alpha(x)}=1
limα(x)β(x)=1,记为
α
(
x
)
∼
β
(
x
)
\alpha(x) \sim \beta(x)
α(x)∼β(x);
(4)无穷小的阶:若
lim
β
(
x
)
[
α
(
x
)
]
k
=
C
≠
0
\lim \frac{\beta(x)}{[\alpha(x)]^{k}}=C \neq0
lim[α(x)]kβ(x)=C=0,称
β
(
x
)
\beta(x)
β(x)是
α
(
x
)
\alpha(x)
α(x)的
k
k
k阶无穷小;
(5)低阶:若
lim
β
(
x
)
α
(
x
)
=
∞
\lim \frac{\beta(x)}{\alpha(x)}=\infty
limα(x)β(x)=∞
无穷大量的比较
(1)当 x → + ∞ x \rightarrow+\infty x→+∞时, ln α x ≪ x β ≪ a x \ln ^{\alpha} x \ll x^{\beta} \ll a^{x} lnαx≪xβ≪ax (其中 α > 0 , β > 0 , a > 1 \alpha>0, \beta>0, a>1 α>0,β>0,a>1 )
(2)当 n → ∞ n \rightarrow \infty n→∞时, ln α n ≪ n β ≪ a n ≪ n ! ≪ n n \ln ^{\alpha} n \ll n^{\beta} \ll a^{n} \ll n ! \ll n^{n} lnαn≪nβ≪an≪n!≪nn (其中 α > 0 , β > 0 , a > 1 \alpha>0, \beta>0, a>1 α>0,β>0,a>1 ).
记住上面的式子可以快速判断出比值是否为0
2.3 等量无穷小
x趋于0时成立
(1) x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln ( 1 + x ) ∼ e x − 1 (2) 1 − cos a x ∼ a 2 x 2 ; (3) ( 1 + x ) a − 1 ∼ a x ; (4) a x − 1 ∼ x ln a (5) sec 2 x − 1 = tan 2 x = ? s i n 2 x 1 = 1 − cos 2 x = x 2 \begin{array}{l}\text { (1) } x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^{x}-1 \\ \text { (2) } 1-\cos^{a} x \sim \frac{a}{2}x^{2}; \\ \text { (3) }(1+x)^{a}-1 \sim a x ; \\ \text { (4) } a^{x}-1 \sim x \ln a \\ \text{ (5) } \sec^2 x - 1 = \tan^2 x = ?\frac{sin^2 x}{1} = 1-\cos^2x = x^2\end{array} (1) x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1 (2) 1−cosax∼2ax2; (3) (1+x)a−1∼ax; (4) ax−1∼xlna (5) sec2x−1=tan2x=?1sin2x=1−cos2x=x2
(3)的推广
当
x
→
0
x \rightarrow0
x→0时,
(
1
+
x
)
α
−
1
∼
α
x
(1+x)^{\alpha}-1\sim \alpha x
(1+x)α−1∼αx,这个结论推广可得,若
α
(
x
)
→
0
,
α
(
x
)
β
(
x
)
→
0
\alpha(x) \rightarrow0, \alpha(x) \beta(x) \rightarrow0
α(x)→0,α(x)β(x)→0,则有
(
1
+
α
(
x
)
)
β
(
x
)
−
1
∼
α
(
x
)
β
(
x
)
(1+\alpha(x))^{\beta(x)}-1\sim \alpha(x) \beta(x)
(1+α(x))β(x)−1∼α(x)β(x)。如x趋于0时,
(
1
+
x
)
x
−
1
∼
x
2
(1+x)^x-1 \sim x^2
(1+x)x−1∼x2
若$ \lim \alpha(x)=0, \lim \beta(x)=\infty
,
且
,且
,且 \lim \alpha(x) \beta(x)=A $,则
lim
[
1
+
α
(
x
)
]
β
(
x
)
=
e
A
\lim [1+\alpha(x)]^{\beta(x)}=e^{A}
lim[1+α(x)]β(x)=eA A是常数或要是存在?
三阶 (记忆方法:3阶,x取反三角arc,右边不变,也可结合三角函数图像)
x − ln ( 1 + x ) ∼ x 2 2 x-\ln (1+x) \sim \frac{x^{2}}{2} x−ln(1+x)∼2x2
$ x-\sin x \sim \frac{x^{3}}{6} \quad \arcsin x-x \sim \frac{x^{3}}{6} $
$ \tan x-x \sim \frac{x^{3}}{3} \quad x-\arctan x \sim \frac{x^{3}}{3}$
积分替换进阶
f(x)和g(x)在 x=a 的某邻域内连续且 limx->a f(x)/g(x) = 1,则有 ∫axf(t)dt = ∫axg(t)dt。如当x趋于0时, ∫ 0 x ( 1 + t ) 1 / t d t ∼ ∫ 0 x e d t = x e \int^x_0(1+t)^{1/t}dt \sim \int^x_0edt=xe ∫0x(1+t)1/tdt∼∫0xedt=xe,$\int^x_0 \ln(1+t)dt = \int^x_0tdt \sim \frac{1}{2}t^2 , , ,\intx_0etdt \sim \int^x_0 1dt$
存疑武18强化时的一道题:用积分替换进阶时候若被积函数不不趋于0,一般不替换?,如cos x2 不替换为1- x4/2,不过替换后好像答案也没错,1是低阶0阶。
代换原则
如果lim(A-B),limA,limB都存在,(极限存在隐含着极限值不为无穷),那么有lim(A-B) = limA - limB。
整体上是乘除可用等量变换,不能在指数的内部去换,加减在 不等价的条件 下可用等量变化。本质上还是精度的问题,因为本来加减后不等于0,若替换后值为0就不对了。
若$ \alpha \sim \alpha_{1} $, $ \beta \sim \beta_1 , 且 ,且 ,且 \lim \frac{\alpha_{1}}{\beta_{1}}=A \neq1 . 则 .则 .则 \alpha -\beta \sim \alpha_{1}-\beta_{1} $,如x趋于0时, tan x - sin x 不能等价于 x-x=0 ,而应该用”三阶“ tan x - x + x-sin x
若$ \alpha \sim \alpha_{1} $, $ \beta \sim \beta_1 , 且 ,且 ,且 \lim \frac{\alpha_{1}}{\beta_{1}}=A \neq -1 . 则 .则 .则 \alpha + \beta \sim \alpha_{1}+\beta_{1} $,如x趋于0时,x+sin x 等价于 x+x = 2x
注意
等量/等价并不是 等于,详细可以看下面的文章和视频,等价无穷小的本质是约分。
https://zhuanlan.zhihu.com/p/62029838
https://www.bilibili.com/video/BV1ba4y1Y7TJ/
错误实例
换元 同阶等量替换未必正确,精度的问题。下面写一种错误的替换方法,因为右两式值都不存在所以不能拆开,正确做法是 x-sinx = x^3/6。如果遇到复杂的可以加减其他变量凑出麦克劳林如tan x - sin x = (tan x-x) - (sin x-x)
lim x → 0 x − sin x x 3 ≠ lim x → 0 x x 3 − lim x → 0 sin x x 3 \lim_{x \rightarrow0} \frac{x-\sin x}{x^{3}} \neq \lim_{x \rightarrow0} \frac{x}{x^{3}}-\lim_{x \rightarrow0} \frac{\sin x}{x^{3}} limx→0x3x−sinx=limx→0x3x−limx→0x3sinx
2.4 阶的比较
常用方法:两两比、除以xk定阶数、估阶 、洛必达、等价无穷小替换、泰勒公式
结论
(积分一次提高一阶所以(m+1),当上限g(x)是n阶时,得n(m+1))
若$ {f(x)} 在 在 在 x=0 的某邻域内连续 , 且当 的某邻域内连续,且当 的某邻域内连续,且当 x \rightarrow0 时 时 时 {f(x)} 是 是 是 x 的 的 的 m $阶无穷小, $ \varphi(x) 是 是 是 x 的 的 的 n 阶无穷小 , 则当 阶无穷小,则当 阶无穷小,则当 x \rightarrow0$时, $ {F(x)}=\int_{0}^{\varphi(x)} {f(t)} d t 是 是 是 x 的 的 的 n(m+1) $阶无穷小)。
如 x → 0 + ∫ 0 x cos t 2 d t x\rightarrow0^+ \int^x_0 \cos t^2 dt x→0+∫0xcost2dt的阶数为n(m+1) = 1(0+1) = 1。若下限不为0,则拆分为2个积分相加,低阶决定最终阶数如x2+x4为2阶
如$\int_{0}^{1-\cos x} e^{x t} \sin t^{2} d t = e^{x \xi} \int_{0}^{1-\cos x} \sin t^{2} d t = \int_{0}^{1-\cos x} \sin t^{2} d $,1-cos x 是2阶,sint2是2阶段,积分一次加1阶段,因此2*(2+1)=6阶。
【例题】880 第三章综合题选做题8
【】2020
结论
f(x)在x=a处可导,且在a附近是n阶无穷小,则f’(x)是n-1阶无穷小。
2.5 其他不等式
常见的不等式
x x + 1 < l n ( 1 + x ) < x < e x − 1 \frac{x}{x+1}<ln{(1+x)} < x < e^x - 1 x+1x<ln(1+x)<x<ex−1 (拉格朗日可证)
( 1 + 1 n ) n < e < 1 + 1 n ) n + 1 (1+\frac{1}{n})^n < e < 1+\frac{1}{n})^{n+1} (1+n1)n<e<1+n1)n+1
也可以从 令(sin x)’ = cos x = 1 得x=0 ;(tan x)’ = sec^2(x) = (1/cos x)^2 ≥1 得出关系(导数+图形结合)
三 其他
3.1 连续与间断
左右极限存在且与该点相等,则该点连续
性质
- 初等函数在其定义区间内连续
- 连续函数的复合函数仍为连续函数
- 连续分母必然不为0
找不连续点
分母为0、初等函数处处连续、分子分母同时乘以一个数时要注意分母本身不能是0否则会漏间断点、注意若是偶函数,在相对的点间断点类型相同。
3.2 两类间断点
间断点定义
若f(x)在x0某去心邻域有定义,但 lim x → a f ( x ) ≠ f ( a ) \lim_{x \rightarrow a} {f(x)} \neq {f(a)} limx→af(x)=f(a),称 f ( x ) {f(x)} f(x)在 x = a x=a x=a处不连续,且 x = a x=a x=a为 f ( x ) {f(x)} f(x)的间断点
第一类间断点 f(a-0),f(a+0)左右极限都存在
- 可去间断点 (左极限 == 右极限)
不连续点两侧函数的极限存在且相等。即f(a-0) = f(a+0) != f(a),a点无定义或值是其他
- 跳跃间断点 (左极限 不== 右极限)
不连续点两侧函数的极限存在但不等。即f(a-0) != f(a+0)
第二类间断点
左右极限有至少有一个不存在(可能都不存在)。无穷间断点【如 1/x】、振荡间断点【sin 1/x】、…等等
总结
类别 | 特点 |
---|---|
第一类间断点 | 左右极限存在 |
可去间断点 | 左右极限存在且相等 |
跳跃间断点 | 左右极限存在且不等 |
第二类间断点 | 左右极限有至少有一个不存在(可能都不存在) |
说明是第一类间断点时要明确类型、第二类间断点不需要明确类型。
找无定义点
3.3 四大定理
最值定理
若 f ( x ) ∈ C [ a , b ] {f(x)} \in C[a, b] f(x)∈C[a,b],则 f ( x ) {f(x)} f(x)在 [ a , b ] [a, b] [a,b]上一定存在最小值和最大值.
有界定理
若 f ( x ) ∈ C [ a , b ] {f(x)} \in C[a, b] f(x)∈C[a,b],则 f ( x ) {f(x)} f(x)在 [ a , b ] [a, b] [a,b]上一定有界
若 f ( x ) ∈ C ( a , b ) {f(x)} \in C(a, b) f(x)∈C(a,b),则 f ( x ) {f(x)} f(x)在 ( a , b ) (a, b) (a,b)上不一定有界,如1/x
(命题点)若 f ( x ) ∈ C ( a , b ) {f(x)} \in C(a, b) f(x)∈C(a,b),且f(a+)存在、f(b-)存在,则 f ( x ) {f(x)} f(x)在 ( a , b ) (a, b) (a,b)上一定有界
若 f ′ ( x ) {f'(x)} f′(x)在有限区间内有界,则 f ( x ) {f(x)} f(x)在该区间内有界。反之不对如f(x)=x1/2
零点定理
若 f ( x ) ∈ C [ a , b ] , f ( a ) f ( b ) < 0 {f(x)} \in C[a, b],{f(a)} {f(b)}<0 f(x)∈C[a,b],f(a)f(b)<0,则存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ∈(a,b),使得 f ( ξ ) = 0 {f(\xi)}=0 f(ξ)=0
介值定理
若 f ( x ) ∈ C [ a , b ] {f(x)} \in C[a, b] f(x)∈C[a,b],对任意的 η ∈ [ m , M ] \eta \in[m, M] η∈[m,M],存在 ξ ∈ [ a , b ] \xi \in[a, b] ξ∈[a,b],使得 f ( ξ ) = η {f(\xi)}=\eta f(ξ)=η
C[a,b] : 在[a,b]上连续
3.4 洛必达法则
由柯西定理证出
n阶可导,则洛必达至多使用到n-1阶;n阶连续可导,则洛必达可用到n阶。
把极限转换为0比0或无穷比无穷即可使用洛必达,要注意洛必达后得出的值需要存在或无穷。
洛之前存在,洛之后未必存在。2022数一第一题
3.5 求导法则
线性法则 : d ( M f ) d x = M d f d x ; [ M f ( x ) ] ′ = M f ′ ( x ) d ( f ± g ) d x = d f d x ± d g d x 乘法法则 : d f g d x = d f d x g + f d g d x 除法法则 : d f g d x = d f d x g − f d g d x g 2 ( g ≠ 0 ) 倒数定则 d 1 g d x = − d g d x g 2 ( g ≠ 0 ) 复合函数求导法则 ( 连锁定则 ) ( f ∘ g ) ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) . d f [ g ( x ) ] d x = d f ( g ) d g d g d x = f ′ [ g ( x ) ] g ′ ( x ) \begin{aligned}& 线性法则: \\ &\frac{\mathrm{d}(M f)}{\mathrm{d} x}=M \frac{\mathrm{d} f}{\mathrm{~d} x} ; \quad[M {f(x)}]^{\prime}=M f^{\prime}(x) \\ &\frac{\mathrm{d}(f \pm g)}{\mathrm{d} x}=\frac{\mathrm{d} f}{\mathrm{~d} x} \pm \frac{\mathrm{d} g}{\mathrm{~d} x}\\ & 乘法法则: \\ &\frac{\mathrm{d} f g}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} x} g+f \frac{\mathrm{d} g}{\mathrm{~d} x}\\ & 除法法则:\\ &\frac{\mathrm{d} \frac{f}{g}}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} f}{\mathrm{~d} x} g-f \frac{\mathrm{d} g}{\mathrm{~d} x}}{g^{2}} \quad(g \neq0)\\ &倒数定则 \\ &\frac{\mathrm{d} \frac{1}{g}}{\mathrm{~d} x}=\frac{-\frac{\mathrm{d} g}{\mathrm{~d} x}}{g^{2}} \quad(g \neq0)\\ &复合函数求导法则(连锁定则)\\ &(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) . \\ &\frac{\mathrm{d} f[g(x)]}{\mathrm{d} x}=\frac{\mathrm{d} {f(g)}}{\mathrm{d} g} \frac{\mathrm{d} g}{\mathrm{~d} x}=f^{\prime}[g(x)] g^{\prime}(x) \end{aligned} 线性法则:dxd(Mf)=M dxdf;[Mf(x)]′=Mf′(x)dxd(f±g)= dxdf± dxdg乘法法则: dxdfg= dxdfg+f dxdg除法法则: dxdgf=g2 dxdfg−f dxdg(g=0)倒数定则 dxdg1=g2− dxdg(g=0)复合函数求导法则(连锁定则)(f∘g)′(x)=f′(g(x))g′(x).dxdf[g(x)]=dgdf(g) dxdg=f′[g(x)]g′(x)
三次方公式
1、(a+b)³=a³+3a²b+3ab²+b³
2、(a-b)³=a³-3a²B+3ab²-b³
3、a³+b³=(a+b)(a²-ab+b²)
4、a³-b³=(a-b)(a²+ab+b²)
四 求极限
4.1 函数极限
方法总览
- 四则运算法则、基本极限替换、等量无穷小替换
- 分式有理化、分子分母同时除以“老大”【抓大头有时候不一定对慎用特别是复合时候】、提复杂但可算的因式
- 麦克劳林【注意精度】、洛必达【洛后不存在不能说明之前不存在660 136】、中值定理(拉格或者积分[一般提非0])
- 夹逼准则(放大缩小,次量级等于主体时候难夹)
- 定积分(n项和)、无穷级数、
- 单调有界准则
0比0型:u(x)v(x) = ev(x) ln u(x) 、ln(1+x)~x、ex - 1 ~ x、x和sin x、tanx、arcsinx、arctanx中任意两个函数之差为三阶无穷小
1∞型:凑 ( 1 + x ) 1 x (1+x)^{\frac{1}{x}} (1+x)x1, 使用 ( 1 + α ( x ) ) β ( x ) ∼ e α ( x ) β ( x ) (1+\alpha(x))^{\beta(x)}\sim e^{\alpha(x) \beta(x)} (1+α(x))β(x)∼eα(x)β(x)
其他型:0 * ∞,∞-∞,00,∞0等,可考虑幂指函数
lim x → 0 + x ln x = l n x 1 / x = 1 / x − 1 / x 2 = 0 \lim_{x\rightarrow 0^+} x \ln x = \frac{ln x}{1/x} = \frac{1/x}{-1/x^2} = 0 limx→0+xlnx=1/xlnx=−1/x21/x=0,推论 lim x → 0 + x a ln b x = 0 \lim_{x \rightarrow 0^+} x^a \ln^b x = 0 limx→0+xalnbx=0 其中 a>0,b>0
总的来说:
优先等量无穷小替换【注意替换条件】,尝试加减项后等量替换,
有积分看看积分中值定理或2.3积分替换进阶,有相减的想想拉格朗日、
不常见的或项比较多的考虑麦克劳林消去部分x
除以“老大”、有根号的试试先有理化、分子0倒一下变分母为∞、幂指化(3)、看到三角函数想三阶
式子不算复杂的洛必达法【注意适用的条件】
不能二次极限,即先求一部分再
4.2 数列极限
n取只整数
转为函数极限、连乘时常用取对数化为加法
求递推关系的数列极限 x 1 = a , x n + 1 f ( x n ) ( n = 1 , 2 , . . . ) x_1 = a, x_{n+1}f(x_n)(n=1,2,...) x1=a,xn+1f(xn)(n=1,2,...)
常用方法
- 法一:证{xn}收敛【单调+有界】, x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn),取极限得A=f(A)
- 法二:先令 lim xn = A,两端取极限得出A,再证明 lim xn = A
判断单调的方法
- 前项-后项、(不变号前提下)比值法、
- 看f(x)的单调
- f(x)单增,x1 < x2,则{Xn}单增,反之单减;
- f(x)单调减可推出{Xn}不单调 【如x1 < x2, x2=f(x1)>x3=f(x2)】,用方法二
【例题】2018数一
4.3 含参极限
通过求极限得出,可能在过程中得到部分参数
观察式子的数值,确定部分参数的可能取值范围,考虑无穷小替换、泰勒展开
高阶 除以 低阶 == 0 两式等价即比值为1
五 基础例题
5.1 求系数
思想:存在 + 存在 == 存在,目标是找出式子中的存在
设 f ( x ) = { arctan 3 x + e a x − 1 x , x < 0 , 2 , x = 0 ( 1 + sin x ) tan 5 x − 1 x arcsin x , x > 0 , 且 lim x → 0 f ( x ) 存在,求 a 的值 \text { 设 } {f(x)}=\left\{\begin{array}{l}\frac{\arctan 3 x+\mathrm{e}^{ax}-1}{x}, x<0, \\ 2, \quad x=0 \text { } \\ \frac{(1+\sin x)^{\tan 5x}-1}{x \arcsin x}, x>0,\end{array}\right.且\lim_{x \rightarrow 0}f(x)存在,求a的值 设 f(x)=⎩ ⎨ ⎧xarctan3x+eax−1,x<0,2,x=0 xarcsinx(1+sinx)tan5x−1,x>0,且limx→0f(x)存在,求a的值
5.2 求极限
拆分法
- 通分
- 三角里套三角则令三角=t
- 麦克劳林展开也可以
- 分子因式分解
麦克劳林
回顾一下常见的公式
直接法(x0=0时,麦克劳林,直接写泰勒级数,考察余项R(n)=0是否成立)
1 1 − x = 1 + x + x 2 + ⋯ + x n + ⋯ = ∑ n = 0 ∞ x n \frac{1}{1-x}=1+x+x^2+\cdots+x^n+\cdots=\sum_{n=0}^{\infty} x^n 1−x1=1+x+x2+⋯+xn+⋯=∑n=0∞xn
1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x n \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+\cdots=\sum_{n=0}^{\infty}(-1)^n x^n 1+x1=1−x+x2−⋯+(−1)nxn+⋯=∑n=0∞(−1)nxn
ln ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + o ( x 2 ) = ∫ 1 1 + x d x x ∈ ( − 1 , 1 ] \ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+o\left(x^{2}\right) = \int \frac{1}{1+x}dx \ x \in (-1,1] ln(1+x)=∑n=0∞n+1(−1)nxn+1=x−21x2+o(x2)=∫1+x1dx x∈(−1,1]
− l n ( 1 − x ) = ∑ n = 0 ∞ x n + 1 n + 1 = x + 1 2 x 2 + o ( x 2 ) = ∫ 1 1 − x d x x ∈ [ − 1 , 1 ) -ln (1-x)=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} =x+\frac{1}{2} x^{2}+o\left(x^{2}\right) = \int \frac{1}{1-x}dx \ x \in [-1,1) −ln(1−x)=∑n=0∞n+1xn+1=x+21x2+o(x2)=∫1−x1dx x∈[−1,1)
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 + ⋯ + x n n ! + o ( x n ) e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right) ex=∑n=0∞n!xn=1+x+2x2+⋯+n!xn+o(xn)
sin x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + . . . + ( − 1 ) 2 ( 2 n + 1 ) ! x 2 n + 1 \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{x^{3}}{3!}+... +\frac{(-1)^2}{(2n+1)!}x^{2n+1} sinx=∑n=0∞(2n+1)!(−1)nx2n+1=x−3!x3+...+(2n+1)!(−1)2x2n+1
cos x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + o ( x 2 ) = s i n ′ x \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2!} x^{2}+o\left(x^{2}\right) = sin' x cosx=∑n=0∞(2n)!(−1)nx2n=1−2!1x2+o(x2)=sin′x
( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) x ∈ ( − 1 , 1 ) (1+x)^{\alpha}=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+o\left(x^{2}\right) x \in (-1,1) (1+x)α=1+∑n=1∞n!α(α−1)⋯(α−n+1)xn=1+αx+2!α(α−1)x2+o(x2)x∈(−1,1)
arctan x = x − 1 3 x 3 + x 5 5 + . . . + ( − 1 ) n 2 n + 1 x 2 n + 1 + o ( x 3 ) \arctan x=x-\frac{1}{3} x^{3}+\frac{x^5}{5}+...+\frac{(-1)^n}{2n+1}x^{2n+1} + o\left(x^{3}\right) arctanx=x−31x3+5x5+...+2n+1(−1)nx2n+1+o(x3)
tan x = x + 1 3 x 3 + o ( x 3 ) \tan x=x+\frac{1}{3} x^{3}+o\left(x^{3}\right) tanx=x+31x3+o(x3)
arcsin x = x + 1 6 x 3 + o ( x 3 ) \arcsin x=x+\frac{1}{6} x^{3}+o\left(x^{3}\right) arcsinx=x+61x3+o(x3)
变积分限
首先需要把常数从变量中分离出来,同时改变积分限
- 此题变量不带常数,不需要变积分限,熟悉麦克劳林公式即可
凑1+Δ
- 凑(1+x)a - 1 = ax
中值定理
式子中有形如f(x)与f(x+a)
- 拉格朗日
- 两次中值
其他类型
- 约分型 上下除以x,保证精度不丢失,需要注意符号
- 约分型 化无穷为0/0
- 凑定型、凑导数定义、正常极限提取、完全平方差、三角转换、对数(化除为减,化乘为加)
5.3 n项和或积
思路:
- 先计算和/积再计算极限
- 夹逼定理(分子/分母不齐次时候)
- 定积分定义(分子分母都齐次)
- sin 2x = 2 * sinx * cosx 注意是n趋于∞,x当作常量
定积分
迫敛性
5.4 存在性问题
思路:
- 存在递推关系 单调+有界
5.5 含参极限
5.6 间断点
- 极限的定义
6.2 基础
熟练使用麦克劳林公式
- 分离定型【代入后能确定极限是个常数】与不定型
- 令三角=t,拆分
6.3 提高
- 三角变换
- 拼凑拆分+麦克劳林
- 正常极限可提取,极限存在可相加
- u(x)^(v(x)) = e^{v(x)ln(u(x))}
一些解释
https://tieba.baidu.com/p/6123154689#125500795468l
- 三角变换 tan 化 cot
- 化乘为加—对数
- 化除为减—对数
- 1的∞型
- 极限内放
反函数图像的举例,单调一定有反?反一定单调?单射
f-1[f(x)] = x
双曲正弦
反例的积累
常考:极限概念性质及存在准则、求极限、无穷小量阶比较
疑问题目
1 洛必达的错误使用