多元微分
1. 极限偏导可微
极限:设函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在去心邻域
D
D
D 有定义,
M
0
(
x
0
,
y
0
)
M_0(x_0, y_0)
M0(x0,y0) 是
D
D
D 的内点或边界点,
M
(
x
,
y
)
∈
D
M(x,y) \in D
M(x,y)∈D,
lim
(
x
,
y
)
→
(
x
0
,
y
0
)
f
(
x
,
y
)
=
A
<
=
>
∀
ϵ
>
0
,
∃
σ
>
0
,
0
<
∣
M
M
0
∣
=
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
<
σ
,
有
∣
f
(
x
,
y
)
−
A
∣
<
ϵ
\lim_{(x,y) \to (x_0,y_0)}f(x,y)=A<=>\forall \epsilon>0, \exists \sigma>0, 0<|MM_0|=\sqrt{(x-x_0)^2+(y-y_0)^2}<\sigma,有|f(x,y)-A|<\epsilon
(x,y)→(x0,y0)limf(x,y)=A<=>∀ϵ>0,∃σ>0,0<∣MM0∣=(x−x0)2+(y−y0)2<σ,有∣f(x,y)−A∣<ϵ
连续:设函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在
P
0
(
x
0
,
y
0
)
P_0(x_0, y_0)
P0(x0,y0) 某个实心邻域有定义
lim
(
x
,
y
)
→
(
x
0
,
y
0
)
f
(
x
,
y
)
=
f
(
x
0
,
y
0
)
\lim_{(x,y) \to (x_0,y_0)}f(x,y)=f(x_0,y_0)
(x,y)→(x0,y0)limf(x,y)=f(x0,y0)
偏导:
函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 处对
x
x
x 的偏导数,可记为
f
x
′
(
x
0
,
y
0
)
f_{x}^{'}(x_0,y_0)
fx′(x0,y0)、
∂
f
∂
x
∣
(
x
0
,
y
0
)
\frac{\partial f}{\partial x}|_{(x_0,y_0)}
∂x∂f∣(x0,y0)、
∂
z
∂
x
∣
(
x
0
,
y
0
)
\frac{\partial z}{\partial x}|_{(x_0,y_0)}
∂x∂z∣(x0,y0)
f x ′ ( x 0 , y 0 ) = lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f_{x}^{'}(x_0,y_0) = \lim_{\Delta x \to 0} \frac{f(x_0+\Delta x, y_0) - f(x_0,y_0)}{\Delta x} fx′(x0,y0)=Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处对 y y y 的偏导数,可记为 f y ′ ( x 0 , y 0 ) f_{y}^{'}(x_0,y_0) fy′(x0,y0)、 ∂ f ∂ y ∣ ( x 0 , y 0 ) \frac{\partial f}{\partial y}|_{(x_0,y_0)} ∂y∂f∣(x0,y0)、 ∂ z ∂ y ∣ ( x 0 , y 0 ) \frac{\partial z}{\partial y}|_{(x_0,y_0)} ∂y∂z∣(x0,y0)
f y ′ ( x 0 , y 0 ) = lim Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y f_{y}^{'}(x_0,y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0+\Delta y) - f(x_0,y_0)}{\Delta y} fy′(x0,y0)=Δy→0limΔyf(x0,y0+Δy)−f(x0,y0)
可微:函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在 ( x , y ) (x,y) (x,y) 全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x, y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)−f(x,y) 表示为 Δ z = A Δ x + B Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) \Delta z = A\Delta x + B\Delta y + o(\sqrt{(\Delta x)^2+(\Delta y)^2} ) Δz=AΔx+BΔy+o((Δx)2+(Δy)2) 则函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在 ( x , y ) (x,y) (x,y) 可微, A Δ x + B Δ y A\Delta x + B\Delta y AΔx+BΔy 为全微分, ( Δ x ) 2 + ( Δ y ) 2 \sqrt{(\Delta x)^2+(\Delta y)^2} (Δx)2+(Δy)2 可记为 ρ \rho ρ
2. 复合函数求导
链式求导:
-
设 z = f ( u , v ) , u = ϕ ( t ) , v = ψ ( t ) z=f(u,v), u=\phi(t),v=\psi(t) z=f(u,v),u=ϕ(t),v=ψ(t),则 z = f [ ϕ ( t ) , ψ ( t ) ] z=f[\phi(t), \psi(t)] z=f[ϕ(t),ψ(t)] d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \frac{dz}{dt} =\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt} dtdz=∂u∂zdtdu+∂v∂zdtdv
-
设 z = f ( u , v ) , u = ϕ ( x , y ) , v = ψ ( x , y ) z=f(u,v), u=\phi(x,y),v=\psi(x,y) z=f(u,v),u=ϕ(x,y),v=ψ(x,y),则 z = f [ ϕ ( x , y ) , ψ ( x , y ) ] z=f[\phi(x,y), \psi(x,y)] z=f[ϕ(x,y),ψ(x,y)] ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x , ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{\partial z}{\partial x} =\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}, \frac{\partial z}{\partial y} =\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} ∂x∂z=∂u∂z∂x∂u+∂v∂z∂x∂v,∂y∂z=∂u∂z∂y∂u+∂v∂z∂y∂v
-
设 z = f ( u , v ) , u = ϕ ( x , y ) , v = ψ ( y ) z=f(u,v), u=\phi(x,y),v=\psi(y) z=f(u,v),u=ϕ(x,y),v=ψ(y),则 z = f [ ϕ ( x , y ) , ψ ( y ) ] z=f[\phi(x,y), \psi(y)] z=f[ϕ(x,y),ψ(y)] ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x , ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v d v d y \frac{\partial z}{\partial x} =\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}, \frac{\partial z}{\partial y} =\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{dv}{dy} ∂x∂z=∂u∂z∂x∂u,∂y∂z=∂u∂z∂y∂u+∂v∂zdydv
符号 f ′ f^{'} f′:
- 设 z = f ( u , v ) , f ( x ) = { u = u ( x , y ) v = v ( x , y ) , f 1 ′ ( u , v ) = ∂ f ∂ u , f 2 ′ ( u , v ) = ∂ f ∂ v z=f(u,v),f(x)= \begin{cases} u=u(x,y)\\ v=v(x,y) \end{cases},f_{1}^{'}(u,v)=\frac{\partial f}{\partial u},f_{2}^{'}(u,v)=\frac{\partial f}{\partial v} z=f(u,v),f(x)={u=u(x,y)v=v(x,y),f1′(u,v)=∂u∂f,f2′(u,v)=∂v∂f,分别简记为 f 1 ′ f_{1}^{'} f1′ 和 f 2 ′ f_{2}^{'} f2′
∂ z ∂ x = f 1 ′ ∂ u ∂ x + f 2 ′ ∂ v ∂ x , ∂ z ∂ y = f 1 ′ ∂ u ∂ y + f 2 ′ ∂ v ∂ y \frac{\partial z}{\partial x} =f_{1}^{'}\frac{\partial u}{\partial x}+f_{2}^{'}\frac{\partial v}{\partial x}, \frac{\partial z}{\partial y} =f_{1}^{'}\frac{\partial u}{\partial y}+f_{2}^{'}\frac{\partial v}{\partial y} ∂x∂z=f1′∂x∂u+f2′∂x∂v,∂y∂z=f1′∂y∂u+f2′∂y∂v
- 书写混淆时, f 1 ′ ( u , v ) f_{1}^{'}(u,v) f1′(u,v) 不可简记为 f 1 ′ f_{1}^{'} f1′,如 z = f ( x + y , f ( x , y ) ) z=f(x+y, f(x,y)) z=f(x+y,f(x,y))
全微分:
- 隐函数 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0的全微分, F x ′ d x + F y ′ d y + F z ′ d z = 0 F_{x}^{'}dx+F_{y}^{'}dy+F_{z}^{'}dz=0 Fx′dx+Fy′dy+Fz′dz=0
- 全微分: d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=∂x∂zdx+∂y∂zdy
3. 多元函数极值
无条件极值:
- 必要条件: f ( x , y ) f(x,y) f(x,y) 偏导为0或不存在
- 充分条件:
f
x
′
(
x
0
,
y
0
)
=
0
,
f
y
′
(
x
0
,
y
0
)
=
0
f_x^{'}(x_0,y_0)=0, f_y^{'}(x_0,y_0)=0
fx′(x0,y0)=0,fy′(x0,y0)=0;
f
x
x
′
′
(
x
0
,
y
0
)
=
A
,
f
x
y
′
′
(
x
0
,
y
0
)
=
B
,
f
y
y
′
′
(
x
0
,
y
0
)
=
C
f_{xx}^{''}(x_0,y_0)=A, f_{xy}^{''}(x_0,y_0)=B, f_{yy}^{''}(x_0,y_0)=C
fxx′′(x0,y0)=A,fxy′′(x0,y0)=B,fyy′′(x0,y0)=C
Δ = A C − B 2 { > 0 A<0 极大值,A>0 极小值 < 0 非极值 = 0 方法失效 \Delta=AC-B^2 \begin{cases} > 0 & \text{A<0 极大值,A>0 极小值} \\ < 0 & \text{非极值}\\ =0 & \text{方法失效} \end{cases} Δ=AC−B2⎩⎪⎨⎪⎧>0<0=0A<0 极大值,A>0 极小值非极值方法失效
条件极值:求函数 f f f 在条件函数 ϕ \phi ϕ 的极值和最值
-
拉格朗日乘数法:
F ( x , y , z , λ ) = f ( x , y , z ) + λ ϕ ( x , y , z ) F(x,y,z,\lambda)=f(x,y,z)+\lambda \phi(x,y,z) F(x,y,z,λ)=f(x,y,z)+λϕ(x,y,z),列方程组 F x ′ = 0 、 F y ′ = 0 、 F z ′ = 0 、 F λ ′ = 0 F_{x}^{'}=0、F_{y}^{'}=0、F_{z}^{'}=0、F_{\lambda}^{'}=0 Fx′=0、Fy′=0、Fz′=0、Fλ′=0 -
欧拉定理:
设 F ( x , y , z ) F(x,y,z) F(x,y,z) 是 k k k 次齐次函数,且 F ( x , y , z ) F(x,y,z) F(x,y,z) 有一阶偏导,则 x F x ′ + y F y ′ + z F z ′ = k F ( x , y , z ) xF_{x}^{'}+yF_{y}^{'}+zF_{z}^{'}=kF(x,y,z) xFx′+yFy′+zFz′=kF(x,y,z),故 F ( x , y , z ) F(x,y,z) F(x,y,z) 值可表示成为 λ \lambda λ,并且 λ \lambda λ可用行列式求得 -
直接代入法:
设函数 f ( x , y ) f(x,y) f(x,y) 和条件函数 ϕ ( x , y ) \phi(x,y) ϕ(x,y) 是关于 x , y x,y x,y 的二元函数,则 y y y 可表示成为 x x x 代入 f ( x , y ) f(x,y) f(x,y),一元函数极值法求出极值和端点值
多元积分
1. 概念和性质
概念:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在有界闭区域 D D D 上有定义,区域 D D D 任意划分为内任意 n n n 小区域: Δ σ 1 , Δ σ 2 , . . . , Δ σ n \Delta \sigma_1, \Delta \sigma_2, ... , \Delta \sigma_{n} Δσ1,Δσ2,...,Δσn,每个 Δ σ i \Delta \sigma_i Δσi 任取一点 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi),记 d i d_i di 为 Δ σ i \Delta \sigma_i Δσi 半径, λ = m a x { d 1 , d 2 , . . . , d n } \lambda = max\{ d_1, d_2, ..., d_n \} λ=max{d1,d2,...,dn} lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i = ∬ f ( x , y ) d σ \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi_i,\eta_i)\Delta \sigma_i=\iint f(x,y)d\sigma λ→0limi=1∑nf(ξi,ηi)Δσi=∬f(x,y)dσ
性质: ∬ D [ f ( x , y ) + g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ + ∬ D g ( x , y ) d σ \iint_{D} [f(x,y)+g(x,y)]d\sigma =\iint_{D} f(x,y) d\sigma+\iint_{D} g(x,y)d\sigma ∬D[f(x,y)+g(x,y)]dσ=∬Df(x,y)dσ+∬Dg(x,y)dσ ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ , ∬ D d σ = σ \iint_{D} f(x,y)d\sigma=\iint_{D_1} f(x,y)d\sigma+\iint_{D_2} f(x,y)d\sigma,\iint_{D} d\sigma = \sigma ∬Df(x,y)dσ=∬D1f(x,y)dσ+∬D2f(x,y)dσ,∬Ddσ=σ
2. 积分对称性
普通对称性:
- D D D 关于 y y y 轴对称, f ( x , y ) f(x,y) f(x,y) 关于 x x x 奇偶性
- D D D 关于 x x x 轴对称, f ( x , y ) f(x,y) f(x,y) 关于 y y y 奇偶性
轮换对称性:
- D D D 关于 y = x y=x y=x 轴对称,则 ∬ f ( x , y ) d σ = ∬ f ( y , x ) d σ \iint f(x,y) d\sigma=\iint f(y,x) d\sigma ∬f(x,y)dσ=∬f(y,x)dσ
- D D D 关于 y = − x y=-x y=−x 轴对称,则 ∬ f ( x , y ) d σ = ∬ f ( − y , − x ) d σ \iint f(x,y) d\sigma=\iint f(-y,-x) d\sigma ∬f(x,y)dσ=∬f(−y,−x)dσ
3. 直角和极坐标系
直角坐标系:
- X型区域
∬
D
f
(
x
,
y
)
d
σ
=
∫
a
b
d
x
∫
ϕ
1
(
x
)
ϕ
1
(
x
)
f
(
x
,
y
)
d
y
\iint_{D} f(x,y) d\sigma=\int_{a}^{b} dx \int_{\phi_1(x)}^{\phi_1(x)}f(x,y) dy
∬Df(x,y)dσ=∫abdx∫ϕ1(x)ϕ1(x)f(x,y)dy
- Y型区域
∬
D
f
(
x
,
y
)
d
σ
=
∫
c
d
d
y
∫
ψ
1
(
y
)
ψ
1
(
y
)
f
(
x
,
y
)
d
x
\iint_{D} f(x,y) d\sigma=\int_{c}^{d} dy \int_{\psi_1(y)}^{\psi_1(y)}f(x,y) dx
∬Df(x,y)dσ=∫cddy∫ψ1(y)ψ1(y)f(x,y)dx
极坐标系: ∬ D f ( x , y ) d σ = ∬ D f ( r c o s θ , r s i n θ ) r d r d θ \iint_{D} f(x,y) d\sigma = \iint_{D} f(rcosθ, rsinθ)rdrdθ ∬Df(x,y)dσ=∬Df(rcosθ,rsinθ)rdrdθ
-
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r c o s θ , r s i n θ ) r d r ( 极 点 O 在 区 域 D 外 ) \iint_{D} f(x,y) d\sigma = \int_{α}^{\beta}dθ\int_{r_1(θ)}^{r_2(θ)}f(rcosθ, rsinθ)rdr(极点O在区域D外) ∬Df(x,y)dσ=∫αβdθ∫r1(θ)r2(θ)f(rcosθ,rsinθ)rdr(极点O在区域D外)
-
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ 0 r ( θ ) f ( r c o s θ , r s i n θ ) r d r ( 极 点 O 在 区 域 D 边 界 ) \iint_{D} f(x,y) d\sigma = \int_{α}^{\beta}dθ\int_{0}^{r_(θ)}f(rcosθ, rsinθ)rdr(极点O在区域D边界) ∬Df(x,y)dσ=∫αβdθ∫0r(θ)f(rcosθ,rsinθ)rdr(极点O在区域D边界)
-
∬ D f ( x , y ) d σ = ∫ 0 2 π d θ ∫ 0 r ( θ ) f ( r c o s θ , r s i n θ ) r d r ( 极 点 O 在 区 域 D 内 ) \iint_{D} f(x,y) d\sigma = \int_{0}^{2\pi}dθ\int_{0}^{r_(θ)}f(rcosθ, rsinθ)rdr(极点O在区域D内) ∬Df(x,y)dσ=∫02πdθ∫0r(θ)f(rcosθ,rsinθ)rdr(极点O在区域D内)
4. 坐标系相互转换
① 公式 { x = r c o s θ y = r s i n θ \begin{cases} x = rcosθ \\ y = rsinθ \end{cases} {x=rcosθy=rsinθ ② 画好区域 D D D 图形,确定上下限转化
5. 交换积分次序
固定
x
x
x 扫描
y
y
y:
∫
0
1
d
y
∫
0
y
f
(
x
,
y
)
d
x
→
∫
d
x
∫
f
(
x
,
y
)
d
y
\int_{0}^{1 }dy \int_{0}^{y} f(x,y)dx \to \int dx \int f(x,y)dy
∫01dy∫0yf(x,y)dx→∫dx∫f(x,y)dy
固定
r
r
r 扫描
θ
θ
θ:
∫
−
π
4
π
2
d
θ
∫
0
2
c
o
s
θ
f
(
r
c
o
s
θ
,
r
s
i
n
θ
)
r
d
r
→
∫
r
d
r
∫
f
(
r
c
o
s
θ
,
r
s
i
n
θ
)
d
θ
\int_{-\frac{\pi}{4} }^{\frac{\pi}{2} }dθ \int_{0}^{2cosθ} f(rcosθ, rsinθ)rdr \to \int rdr \int f(rcosθ, rsinθ)dθ
∫−4π2πdθ∫02cosθf(rcosθ,rsinθ)rdr→∫rdr∫f(rcosθ,rsinθ)dθ
极坐标换序时,固定
r
r
r 长度从一端扫到另一端。上图中间弧线为界,左侧
θ
θ
θ 和右侧
θ
θ
θ 起始大小不同,所以需要拆分为两个积分。