6.1 空间解析几何简介
6.1.1 空间直角坐标系
6.1.2 空间两点间的距离
6.1.3 曲面方程
定义6.1.1 若曲面S上任意一点的坐标满足方程F(x,y,z)=0,而不在曲面S上的点的坐标都不满足方程F(x,y,z)=0,则方程F(x,y,z)=0称为曲面S的方程,而曲面S称为方程F(x,y,z)=0的图形。
6.2 多元函数的基本概念
6.2.1 领域与平面区域
1.领域
设是xOy平面上的一个点,
是一正数,与点
的距离小于
的点
的全体,称为点
的
邻域,记为
,即
2.平面区域
6.2.2 二元函数的概念
1.二元函数的定义
定义6.2.1 设D是一个非空的二元有序数组的集合,f为一对应法则。如果对于每一有序数组,都有唯一确定变量z的值与之对应,则称这个对应法则f是定义在D上的函数,或称变量z是变量x,y的二元函数,记作
其中x,y称为自变量,z称为因变量。集合D称为函数的定义域。
2.二元函数的几何意义
6.2.3 二元函数的极限
定义6.2.2 设函数 在点
某邻域内有定义(点
可除外),a为常数,如果对于任意给定的正数
,总存在一个数
,使当
时,恒有
成立,则称当时,函数
以a为极限,记作
为了区别于一元函数的极限,把二元函数的极限叫做二重极限。
6.2.4 二元函数的连续性
定义6.2.3 设函数在点
的某邻域内有定义,若
则称函数在点
连续,点
叫做函数
的连续点。否则,称函数
在 点处间断,点
叫做函数
的间断点。
函数在点
处连续,需满足以下三个条件:
(1)函数在点
有定义
(2)存在
(3).
二元函数的性质:
(1)有界性 若函数在有界闭区域D上连续,则
在D上有界
(2)最值性 若函数在有界闭区域上连续,则
在D上取得最大值和最小值
(3)界值性 若函数在有界闭区域上连续,m和M分别为函数
在D上的最小值和最大值,则对介于m和M之间的任一实数c,至少存在一点
,使
6.3 偏导数
6.3.1 偏导数
1.偏导数的定义
设函数在点
的某邻域内有定义,当x从
取得改变量
而
保持不变时,函数z的改变量