从零开始学数据分析之——《微积分》第六章 多元函数微积分

6.1 空间解析几何简介

6.1.1 空间直角坐标系

6.1.2 空间两点间的距离

6.1.3 曲面方程

定义6.1.1 若曲面S上任意一点的坐标满足方程F(x,y,z)=0,而不在曲面S上的点的坐标都不满足方程F(x,y,z)=0,则方程F(x,y,z)=0称为曲面S的方程,而曲面S称为方程F(x,y,z)=0的图形。

6.2 多元函数的基本概念 

6.2.1 领域与平面区域

1.领域

P_{0}\left ( x_{0},y_{0} \right )是xOy平面上的一个点,\delta是一正数,与点P_{0}\left ( x_{0},y_{0} \right )的距离小于\delta的点P\left ( x,y \right )的全体,称为点P_{0}\delta邻域,记为U\left ( P_{0},\delta \right ),即

U\left ( P_{0},\delta \right )=\left \{ \left ( x,y \right )|\sqrt{\left ( x-x_{0} \right )^{2}+\left ( y-y_{0} \right )^{2}} \right < \delta \}

2.平面区域

6.2.2 二元函数的概念

1.二元函数的定义

定义6.2.1 设D是一个非空的二元有序数组的集合,f为一对应法则。如果对于每一有序数组\left ( x,y \right )\in D,都有唯一确定变量z的值与之对应,则称这个对应法则f是定义在D上的函数,或称变量z是变量x,y的二元函数,记作

z=f\left ( x,y \right ) \left ( x,y \right )\in D

其中x,y称为自变量,z称为因变量。集合D称为函数的定义域。

2.二元函数的几何意义

 

6.2.3 二元函数的极限

定义6.2.2  设函数z=f\left ( x,y \right ) 在点P_{0}\left ( x_{0},y_{0} \right )某邻域内有定义(点P_{0}可除外),a为常数,如果对于任意给定的正数\varepsilon,总存在一个数\delta,使当0< \rho =\sqrt{\left ( x-x_{0}\right )^{2} +\left ( y-y_{0} \right )^{2}}< \delta时,恒有

                \left | f\left ( x,y \right )-a \right |< \varepsilon

成立,则称当\left ( x,y \right )\rightarrow \left ( x_{0},y_{0} \right )时,函数f\left ( x,y \right )以a为极限,记作

                \lim_{\left ( x,y \right )\rightarrow \left ( x_{0},y_{0} \right )}f\left ( x,y \right )=a

为了区别于一元函数的极限,把二元函数的极限叫做二重极限。

6.2.4 二元函数的连续性

定义6.2.3 设函数z=f\left ( x,y \right )在点P_{0}\left ( x_{0},y_{0} \right )的某邻域内有定义,若

                \lim_{\left ( x,y \right )\rightarrow \left ( x_{0},y_{0} \right )}f\left ( x,y \right )=f\left ( x_{0},y_{0} \right )

则称函数f(x,y)在点\left ( x_{0},y_{0} \right )连续,点\left ( x_{0},y_{0} \right )叫做函数f(x,y)的连续点。否则,称函数f(x,y)

在 点\left ( x_{0},y_{0} \right )处间断,点\left ( x_{0},y_{0} \right )叫做函数f(x,y)的间断点。

函数z=f\left ( x,y \right )在点\left ( x_{0},y_{0} \right )处连续,需满足以下三个条件:

(1)函数f(x,y)在点\left ( x_{0},y_{0} \right )有定义

(2)\lim_{\left ( x,y \right )\rightarrow \left ( x_{0},y_{0} \right )}f\left ( x,y \right )存在

(3)\lim_{\left ( x,y \right )\rightarrow \left ( x_{0},y_{0} \right )}f\left ( x,y \right )=f\left ( x_{0},y_{0} \right ).

二元函数的性质:

(1)有界性 若函数f(x,y)在有界闭区域D上连续,则f(x,y)在D上有界

(2)最值性 若函数f(x,y)在有界闭区域上连续,则f(x,y)在D上取得最大值和最小值

(3)界值性  若函数f(x,y)在有界闭区域上连续,m和M分别为函数f(x,y)在D上的最小值和最大值,则对介于m和M之间的任一实数c,至少存在一点\left ( x_{0},y_{0} \right )\in D,使f\left ( x_{0},y_{0} \right )=c.

6.3 偏导数

6.3.1 偏导数

1.偏导数的定义

设函数z=f\left ( x,y \right )在点\left ( x_{0},y_{0} \right )的某邻域内有定义,当x从x_{0}取得改变量\Delta x\left ( \Delta x\neq 0 \right ),y=y_{0}保持不变时,函数z的改变量

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值