【证明题】(一)微分中值定理

本文详细探讨了微分中值定理,包括单中值定理的证明,如费马引理和罗尔定理,以及双中值情况下的分析。通过拉格朗日和柯西定理,阐述了中值不等式和积分中值定理的证明方法,并提供了证明题目的解决策略。
摘要由CSDN通过智能技术生成

微分中值定理

可导 → \to 费马 → \to 罗尔 { 拉 氏 构 造 原 函 数 柯 西 交 叉 原 函 数 \begin{cases} 拉氏 & & {构造原函数} \\ 柯西 & & {交叉原函数} \end{cases} { 西

费马引理:设 f ( x ) f(x) f(x) x 0 x_0 x0 某邻域 U ( x 0 ) U(x_0) U(x0) 内有定义,且在 x 0 x_0 x0 处可导,若 f ( x ) f(x) f(x) x 0 x_0 x0 取到极值,则 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0

证明
f ( x ) f(x) f(x) x 0 x_0 x0 处取极大值,则 ∀ x ∈ U ( x 0 ) \forall x \in U(x_0) xU(x0),均有 f ( x ) ≤ f ( x 0 ) f(x)≤f(x_0) f(x)f(x0)
f ( x ) f(x) f(x) x 0 x_0 x0 处可导,则 f − ′ ( x 0 ) f_{-}^{'}(x_0) f(x0) f + ′ ( x 0 ) f_{+}^{'}(x_0) f+(x0) 都存在且相等
f − ′ ( x 0 ) = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 ≥ 0 , f + ′ ( x 0 ) = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 ≤ 0 , f_{-}^{'}(x_0) = \lim_{x \to x_{0}^{-} }\frac{ f(x) - f(x_0) }{ x-x_0 } ≥ 0, f_{+}^{'}(x_0) = \lim_{x \to x_{0}^{+} }\frac{ f(x) - f(x_0) }{ x-x_0 }≤ 0, f(x0)=xx0limxx0f(x)f(x0)0f+(x0​<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值