微分中值定理证明和总结

微分中值定理

微分中值定理有:


定理内容及证明

铺垫内容:费马定理

x 0 x_0 x0是函数的一个极值点,如果 f ′ ( x 0 ) f'(x_0) f(x0)存在,则 f ′ ( x 0 ) = 0. f'(x_0)=0. f(x0)=0.

证明:费马定理


罗尔中值定理

若函数 f ( x ) f(x) f(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]内连续
  • 在开区间 ( a , b ) (a,b) (a,b)内可导
  • f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

则存在 ξ ∈ ( a , b ) \xi\in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

证明

由于 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,由介值定理, f f f [ a , b ] [a,b] [a,b]上可以取得最大值 M M M和最小值 m m m.

如果 M = m = f ( a ) = f ( b ) M=m=f(a)=f(b) M=m=f(a)=f(b),则 f f f [ a , b ] [a,b] [a,b]上恒为常数, ∀ x ∈ ( a , b ) \forall x\in(a,b) x(a,b),都有 f ′ ( x ) = 0. f'(x)=0. f(x)=0.

如果 M M M m m m至少有一个与 f ( a ) f(a) f(a)不相等,不妨设 M > f ( a ) M>f(a) M>f(a),于是存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 M = f ( ξ ) M=f(\xi) M=f(ξ).显然 ξ \xi ξ f f f的一个极大值点,由费马定理得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0.


柯西中值定理

若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]连续
  • 在开区间 ( a , b ) (a,b) (a,b)可导
  • g ′ ( x ) ≠ 0 g'(x)\neq 0 g(x)=0

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

证明

由于当 x ∈ ( a , b ) x\in(a,b) x(a,b)时, g ′ ( x ) ≠ 0 g'(x)\neq0 g(x)=0,所以由罗尔定理可得 g ( b ) ≠ g ( a ) g(b)\neq g(a) g(b)=g(a).作辅助函数
φ = [ f ( x ) − f ( a ) ] − f ( b ) − f ( a ) g ( b ) − g ( a ) [ g ( x ) − g ( a ) ] \varphi=[f(x)-f(a)]-\dfrac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)] φ=[f(x)f(a)]g(b)g(a)f(b)f(a)[g(x)g(a)]

此时 φ \varphi φ [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,并且 φ ( a ) = φ ( b ) = 0 \varphi(a)=\varphi(b)=0 φ(a)=φ(b)=0,由罗尔定理得存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得
φ ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ξ ) = 0 \varphi'(\xi)=f'(\xi)-\dfrac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=0 φ(ξ)=f(ξ)g(b)g(a)f(b)f(a)g(ξ)=0


f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \dfrac{f'(\xi)}{g'(\xi)}=\dfrac{f(b)-f(a)}{g(b)-g(a)} g(ξ)f(ξ)=g(b)g(a)f(b)f(a)


拉格朗日中值定理

若函数 f ( x ) f(x) f(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]上连续
  • 在开区间 ( a , b ) (a,b) (a,b)内可导

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \dfrac{f(b)-f(a)}{b-a}=f'(\xi) baf(b)f(a)=f(ξ)

证明

g ( x ) = x g(x)=x g(x)=x,因为 f f f g g g满足在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导, g ′ ( x ) ≠ 0 g'(x)\neq 0 g(x)=0,由柯西中值定理得存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得
f ( b ) − f ( a ) b − a = f ′ ( ξ ) \dfrac{f(b)-f(a)}{b-a}=f'(\xi) baf(b)f(a)=f(ξ)

其实拉格朗日中值定理就是柯西中值定理的一种特殊情况。


总结

微分中值定理是导数在研究函数方面的应用,也是微分学的重要组成部分,要牢牢掌握,才能更好地学习接下来的内容。当然,也可以做以下习题加以巩固。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值