微分中值定理
微分中值定理有:
定理内容及证明
铺垫内容:费马定理
设 x 0 x_0 x0是函数的一个极值点,如果 f ′ ( x 0 ) f'(x_0) f′(x0)存在,则 f ′ ( x 0 ) = 0. f'(x_0)=0. f′(x0)=0.
证明:费马定理
罗尔中值定理
若函数 f ( x ) f(x) f(x)满足
- 在闭区间 [ a , b ] [a,b] [a,b]内连续
- 在开区间 ( a , b ) (a,b) (a,b)内可导
- f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
则存在 ξ ∈ ( a , b ) \xi\in (a,b) ξ∈(a,b),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f′(ξ)=0
证明
由于 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续,由介值定理, f f f在 [ a , b ] [a,b] [a,b]上可以取得最大值 M M M和最小值 m m m.
如果 M = m = f ( a ) = f ( b ) M=m=f(a)=f(b) M=m=f(a)=f(b),则