微分中值定理证明和总结

本文介绍了微分中值定理的基本概念,包括罗尔定理的极值点条件、柯西中值定理的单调函数比例关系和拉格朗日中值定理的平均变化率,强调了这些定理在函数分析中的核心地位及其证明过程。通过实例和习题,帮助读者深化理解并应用于实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分中值定理

微分中值定理有:


定理内容及证明

铺垫内容:费马定理

x 0 x_0 x0是函数的一个极值点,如果 f ′ ( x 0 ) f'(x_0) f(x0)存在,则 f ′ ( x 0 ) = 0. f'(x_0)=0. f(x0)=0.

证明:费马定理


罗尔中值定理

若函数 f ( x ) f(x) f(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]内连续
  • 在开区间 ( a , b ) (a,b) (a,b)内可导
  • f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

则存在 ξ ∈ ( a , b ) \xi\in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

证明

由于 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,由介值定理, f f f [ a , b ] [a,b] [a,b]上可以取得最大值 M M M和最小值 m m m.

如果 M = m = f ( a ) = f ( b ) M=m=f(a)=f(b) M=m=f(a)=f(b),则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值