【高数】微分中值定理有关的一道证明题

题意

  • f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上连续, ( 0 , 1 ) (0,1) (0,1) 内可导,且 f ( 0 ) = 0 , f ( 1 ) = 1 f(0)=0,f(1)=1 f(0)=0,f(1)=1
    证明:给定任意 n n n 个正数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an
    ( 0 , 1 ) (0,1) (0,1) 内一定存在互不相同的 n n n 个数, 0 < ξ 1 < ξ 2 < ⋯ < ξ n < 1 0<\xi_1<\xi_2<\cdots<\xi_n<1 0<ξ1<ξ2<<ξn<1 ,满足:
    ∑ a i = ∑ a i f ′ ( ξ i ) \sum a_i= \sum \frac{a_i}{f^\prime(\xi_i)} ai=f(ξi)ai

证明

  • 微分中值定理的题。
    由于这里面 n n n 个数字都不相同,我们就需要把 ( 0 , 1 ) (0,1) (0,1) 划分成 n n n 个区间 ( c i , c i + 1 ) (c_i,c_{i+1}) (ci,ci+1)
    i ∈ [ 1 , n ] i\in[1,n] i[1,n] c 1 = 0 , c n + 1 = 1 , c i < c i + 1 c_1=0,c_{n+1}=1,c_i<c_{i+1} c1=0,cn+1=1,ci<ci+1
  • 对于第 i i i 个区间,根据拉格朗日中值定理,得到:
    f ( c i + 1 ) − f ( c i ) c i + 1 − c i = f ′ ( ξ i ) ,其中 ξ i ∈ ( c i , c i + 1 ) \frac{f(c_{i+1})-f(c_i)}{c_{i+1}-c_i}=f^\prime(\xi_i),其中 \xi_i\in(c_i,c_{i+1}) ci+1cif(ci+1)f(ci)=f(ξi),其中ξi(ci,ci+1)
    根据反推法,那么我们要求的值:
    a i f ′ ( ξ i ) = ( c i + 1 − c i ) a i f ( c i + 1 ) − f ( c i ) \frac{a_i}{f^\prime(\xi_i)}=\frac{(c_{i+1}-c_i)a_i}{f(c_{i+1})-f(c_i)} f(ξi)ai=f(ci+1)f(ci)(ci+1ci)ai
  • 若我们能够构造出来 f ( c i + 1 ) − f ( c i ) = X ⋅ a i f(c_{i+1})-f(c_i)=X\cdot a_i f(ci+1)f(ci)=Xai,那么可以抵消掉 a i a_i ai
    a i f ′ ( ξ i ) = c i + 1 − c i X \frac{a_i}{f^\prime(\xi_i)}=\frac{c_{i+1}-c_i}{X} f(ξi)ai=Xci+1ci
    那么就可以错位相减了
    ∑ a i f ′ ( ξ i ) = c n + 1 − c 1 X = 1 X = ∑ a i \sum\frac{a_i}{f^\prime(\xi_i)}=\frac{c_{n+1}-c_1}{X}=\frac{1}{X}=\sum a_i f(ξi)ai=Xcn+1c1=X1=ai
    那么,我们可以令 X = 1 ∑ a i X=\cfrac{1}{\sum a_i} X=ai1
    我们还要让 f ( c i + 1 ) − f ( c i ) = X ⋅ a i f(c_{i+1})-f(c_i)=X\cdot a_i f(ci+1)f(ci)=Xai,那么我们 f ( c i ) f(c_i) f(ci) 就可以构造出来了:
    f ( c i ) = ∑ k = 1 i − 1 a k ∑ k = 1 n a k f(c_i)=\frac{\sum_{k=1}^{i-1} a_k}{\sum_{k=1}^n a_k} f(ci)=k=1nakk=1i1ak
  • 注意到, 0 = f ( 0 ) = f ( c 1 ) < f ( c 2 ) < ⋯ < f ( c n + 1 ) = f ( 1 ) = 1 0=f(0)=f(c_1)<f(c_2)<\cdots<f(c_{n+1})=f(1)=1 0=f(0)=f(c1)<f(c2)<<f(cn+1)=f(1)=1
    f ( x ) f(x) f(x) 连续,根据介值定理,自然取得到这里的所有 f ( c i ) f(c_i) f(ci)
  • 构造完成后,我们便可以轻松证明:
    f ( c i + 1 ) − f ( c i ) c i + 1 − c i = a i ( ∑ k = 1 n a k ) ( c i + 1 − c i ) = f ′ ( ξ i ) , ξ i ∈ ( c i , c i + 1 ) \frac{f(c_{i+1})-f(c_i)}{c_{i+1}-c_i}=\frac{a_i}{(\sum_{k=1}^n a_k)(c_{i+1}-c_i)}=f^\prime(\xi_i),\xi_i\in(c_i,c_{i+1}) ci+1cif(ci+1)f(ci)=(k=1nak)(ci+1ci)ai=f(ξi)ξi(ci,ci+1)
    于是
    a i f ′ ( ξ i ) = ( ∑ k = 1 n a k ) ( c i + 1 − c i ) \frac{a_i}{f^\prime(\xi_i)}=(\sum_{k=1}^n a_k)(c_{i+1}-c_i) f(ξi)ai=(k=1nak)(ci+1ci)
    于是
    ∑ a i f ′ ( ξ i ) = ( ∑ k = 1 n a k ) ( c n + 1 − c 1 ) = ∑ k = 1 n a k □ \sum\frac{a_i}{f^\prime(\xi_i)}=(\sum_{k=1}^n a_k)(c_{n+1}-c_1)=\sum_{k=1}^n a_k \qquad\Box f(ξi)ai=(k=1nak)(cn+1c1)=k=1nak
  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值