【初等数学】数与式知识梳理

  1. 本文为【初等数学】数与式知识梳理
  2. 本文主要参考小崔说数考研资料,侵权必删

数的分类

数的分类

  1. 常见的无理数: π ≈ 3.14 、 e ≈ 2.72 \pi \approx 3.14、e \approx 2.72 π3.14e2.72

  2. 虚数:表示为 a + b i a+bi a+bi的形式,且 b ≠ 0 b \neq 0 b=0

    i 2 = − 1 , − 1 = i i^2 = -1, \sqrt{-1} = i i2=1,1 =i

    运算规则和实数相同

    ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi)+(c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i

    ( a + b i ) ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi)(c + di) = (ac - bd) + (bc + ad)i (a+bi)(c+di)=(acbd)+(bc+ad)i

整式

单项式和多项式统称为整式

单项式与多项式

  1. 单项式:形如数与字母乘积的代数式,如 3 x 2 3x ^2 3x2

    单独一个数或字母也是单项式

    单项式中字母因数称为单项式的系数

    单项式中字母的指数之和称为单项式的次数

  2. 多项式:多个单项式的和

    每个单项式称为多项式的,不含字母的项称为常数项

    一个多项式有几项就叫做几项式

    多项式中,次数最高项的次数,为多项式的次数(X次N项式)

多项式的乘法公式

  1. 完全平方: ( a ± b ) 2 = a 2 ± 2 a b + b 2 (a \pm b)^2 = a^2 \pm 2ab + b^2 (a±b)2=a2±2ab+b2

  2. 三项平方: ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 a c (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac (a+b+c)2=a2+b2+c2+2ab+2bc+2ac

  3. 和/差立方: ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 (a \pm b)^3 = a^3 \pm 3a^2b +3ab^2 \pm b^3 (a±b)3=a3±3a2b+3ab2±b3

  4. 平方差: a 2 − b 2 = ( a + b ) ( a − b ) a^2-b^2 = (a + b)(a - b) a2b2=(a+b)(ab)

  5. 立方和/差: a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2) a3±b3=(a±b)(a2ab+b2)

因式分解

  1. 因式分解实质上为一种恒等变形,化和为积

    因式分解的结果中,每个结果均为整式,称之为因式

    要分解到不能再分解为止

  2. 因式分解的方法

    乘法公式

    十字相乘法

十字相乘法

分式

  1. A , B A,B A,B分别表示多项式, A ÷ B A {\div} B A÷B可表示为 A B \frac{A}{B} BA的形式,若 B B B中包含字母,则称 A B \frac{A}{B} BA为分式。 A A A分子, B B B分母

  2. 真分式:分式分子的次数 < < <分母的次数

    假分式:分式分子的次数 ≥ \ge 分母的次数

分式的拆分

  1. 假分式可以拆成多项式+真分式

    方法:高阶项依次拆,拆完补项(在分子上不停凑分母)

  2. 真分式拆成多个小分式

    方法:先将分母因式分解,再将因式裂变为小分式,待定系数求解

真分式的拆解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值