本篇文章适用于专接本数学的考生,想要学好数学,第一章第二章第三章的基础一定要打牢,这会使你学习后续章节不会感到特别吃力,所以,一定!一定!!一定!!!要学好第123章的知识。这篇文章主要总结了基本函数的图像,便于大家根据函数图像记忆函数的基本性质,连续相关概念,极限与连续的关系,以及笔者在刷题过程中遇到令人非常"感动"的错题,笔者是计算机专业,专业课相关的内容也会陆续更新。文章中如有错误,欢迎大佬批评指正。
第一章:函数、极限、连续、错题
一:函数:掌握基本初等函数的性质(单调性、值域、定义域、有界性、奇偶性、三角变换)
指数函数
a>1
当x=0时,y=1;
定义域:R
值域:(0,+∞)
| 0<a<1
左加右减(针对x)
上加下减(针对y)
对数函数
|
幂函数
三角函数
结合图形来理解,正切余切,正弦余弦,正割余割
正切 = a/b(对边/临边) | 余切 = b/a(临边/对边) |
---|---|
正弦 = a/c(对边/斜边) | 余弦 = b/c(临边/斜边) |
正割 = c/a(斜边/对边) | 余割 = c/b(斜边/临边) |
收敛必有界,有界不一定收敛
正弦函数 y=sin x
定义域:R
值域:[-1,1]
奇偶性:奇函数
有界性:有界函数 |
余弦函数 y=cosx
定义域:R
值域:[-1,1]
奇偶性:偶函数
有界性:有界函数
正切函数 y = tanx
定义域:x≠π/2+kπ
值域:R
奇偶性:奇函数
有界性:无界函数
余切函数 y = cotx
定义域:x≠π+kπ
值域:R
奇偶性:奇函数
有界性:无界函数
反三角函数
y=arcsinx
定义域:[-1,1]
值域:[-π/2 ,π/2 ]
y=arccosx
定义域:[-1,1]
值域:[0,π] |
y = arctanx
定义域:R
值域:(-π/2,π/2)
y=arccotx
定义域:R
值域:(0,π) |
三角变换
secx = 1/cosx | csc x = 1/sin x |
---|---|
sinx^2 + cosx2 = 1 | 1 + tanx ^ 2 = secx2 |
cos2x = cosx^ 2 - sinx^2 | 1 = cosx 2 + sinx 2 |
cos2x = 2cosx2 -1 | cos2x = 1 - 2sinx 2 |
cos(a+b)= cosacosb - sinasinb | sin(a+b) = sina * cosb + cosa * sinb |
cos(a-b)= cosacosb + sinasinb | sin(a+b) = sina * cosb + cosa * sinb |
sin2x = 2sinxcosx |
函数的奇偶性:
奇+奇 = 奇 | 偶 + 偶 = 偶 |
---|---|
奇 * 奇 = 偶 | 偶 * 偶 = 偶 |
奇 * 偶 = 奇 | 偶 + 奇 = 非奇非偶 |
(函数为非零函数) |
复合函数的奇偶性:
内层为奇,复合为奇
内层为偶,外层为奇则复合为奇
内层为偶,外层为偶则复合为偶
二:极限
- 极限存在<==>左极限 = 右极限 = A (充要条件)
- 常见函数不存在的情况(当x趋近于正无穷和负无穷时):y = ex ,y = arctanx ,y = arccotx
- 无穷小量:绝对值无限变小且趋近于零的量,指的是变化状态。
- 无穷小量是与极限过程相联系的,在某个变化过程中是无穷小,其他过程就不一定了
- 一个非零常数不管多么小都不是无穷小量
- 无穷小量的倒数为无穷大量
- 有限个无穷小量的和差积,依然是无穷小量
- 无穷小量与有界变量的乘积仍为无穷小量
- 无穷小量阶的比较
设a,b为同一极限过程下的无穷小量,若lima/b 等于
- 0 ,称 a是 b的高阶无穷小量
- 无穷,称a是b的低阶无穷小量
- 1,称 a是b的等价无穷小量
- k , 称a是b的同阶但不等价无穷小量
- 等价代换
当x–>0时,有
等价代换公式由泰勒公式变形而来,所以等价代换公式不能直接进行加减,只能用在乘除
sinx ~ x | arctanx ~ x | 1-cosx ~1/2 *x2 |
---|---|---|
tanx ~ x | arcsinx ~ x | (1+x)a~ 1-ax |
ln(1+x) ~ x | ex - 1 ~ x | ax- 1 ~ xlna |
(1+x)1/2-1 ~ 1/2x |
- 两个重要极限
第一类重要极限:当x趋近于0时可以用等价代换进行计算,当x趋近于∞时,可以利用无穷小量的性质进行计算;
第二类重要极限:满足当x趋近于∞时,套用公式即可,注意:正负号。 - 函数求极限
- 有理化求极限(分子或分母中有根号时)
- 分式相减求极限—>(通分、约分)
- 利用等价代换求极限
- 利用无穷小量的性质求极限
- 利用对数恒等式求极限
- 利用两个重要极限公式求极限
- 洛必达求极限
- 洛必达求极限
- “0/0”型和“∞/∞”型
先等价,再洛必达,满足洛必达可以一直洛,直到求出结果或者不满足了为止
- “0×∞”型
遵循“上繁下简”原则,将其转换成“0/0”型或“∞/∞”型
- ”∞ - ∞“型
采用通分的方法,将其转换成“0/0”型或“∞/∞”型
- 00、∞0型
使用e的抬起法
三:连续
- 函数y=f(x) 在a处连续,需要满足下面三个条件:
- 函数y=f(x)在a处有定义(即:a在定义域内)
- 函数 f(x) 在 a 处的极限存在
- f(x) 在该点的极限值等于在该点的函数值
- 间断点的判断:
- 在点b处无定义(即点b不在定义域内)
- 若在点b处有定义,但该点的 极限值 不存在
- 若在点b处有定义且极限存在,但该点的 极限值 ≠ 函数值
- 函数间断点的分类:
- 第一类间断点,左右极限都存在,如果左极限 = 右极限,称为可去间断点
- 第一类间断点,左右极限都存在,如果左极限 ≠ 右极限,称为跳跃间断点
- 第二类间断点,不满足第一类间断点的间断点,都是第二类
- 闭区间上连续函数的性质
- 最大值最小值定理:如果函数 f(x) 在闭区间 [a,b] 上连续,则函数在闭区间 [a,b] 上必定取得最大值和最小值。
- 有界性定理:若函数 f(x) 在闭区间 [a,b] 上连续,则函数 f(x) 在闭区间 [a,b] 上必有界
- 零点定理:若函数 f(x) 在闭区间 [a,b] 上连续,且 f(a) 与 f(b) 异号(即f(a)*f(b) < 0),则至少存在一点 c∈(a,b),使得 f(c)= 0;其中 c 被称为 零点。
四:错题积累
eg1:遇见带分式,带分号,优先想到有理化
eg2: 注意:不要化简,先找无定义的点,再判断无定义点的左右极限是否存在在,若存在,判断是否相等
eg3:注意:定义域的范围
函数的有界性,有界的前提是,在函数的定义域内有界,其次如果一个函数收敛,那么必有界