从极大既然估计的角度推导均方误差最小化

本文探讨了在曲线拟合问题中,如何从极大似然估计的角度理解均方误差最小化。通过假设输出值遵循以参数为均值的正态分布,推导出均方误差最小化等价于正态分布的极大似然估计,这一过程在机器学习和概率论中有重要应用。
摘要由CSDN通过智能技术生成

问题背景

曲线拟合问题,给定参数 w w w和输入 x x x,用多项式函数来拟合曲线,其中 M M M表示多项式的次数:
y ( x , w ) = w 0 + w 1 x + w 2 x 2 + . . . + w M x M y(x,w) = w_0 + w_1x+w_2x^2+...+w_Mx^M y(x,w)=w0+w1x+w2x2+...+wMxM
如下图所示:
在这里插入图片描述

推导

我们都知道曲线拟合问题,可以用均方误差最小化来解决,也就是使以下函数的值最小化:
E ( w ) = 1 2 ∑ n = 1 N ( y ( x n , w ) − t n ) 2 E(\textbf{w}) = \frac{1}{2}\sum_{n=1}^{N}{(y(x_n,\textbf{w} )-t_n)}^2 E(w)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值