浅谈Nabla算子


这是一篇用来纪念我始终记不住的矢量分析公式
矢量(向量)运算?不是很简单吗?内积外积三重混合积四重混合积还有吗?
有!!!
当引入了Nabla算子以后,世界都不一样了

从大一学数学分析,大二学数学物理方法和微分几何,大三学量子力学和电动力学
我几乎没记住过柱坐标系和球坐标系的nabla算子公式
或者说明天考试,今天背过了,明天考完了,下次要用到的时候又忘了。
想哭
不多吐槽了
下面开始正文

1 Nabla算子的相关理解

1.1 Nabla算子概念

定义nabla算子
∇ = ( ∂ ∂ x ∂ ∂ y ∂ ∂ z ) \nabla=\begin{pmatrix}\frac{\partial}{\partial x}\\\frac{\partial}{\partial y}\\\frac{\partial}{\partial z}\end{pmatrix} =xyz
但这样的写法,是在直角坐标系下定义的,为了凸显基的作用,可以考虑写成
∇ = ( x ^ y ^ z ^ ) ( ∂ ∂ x ∂ ∂ y ∂ ∂ z ) = x ^ ∂ ∂ x + y ^ ∂ ∂ y + z ^ ∂ ∂ z \begin{aligned}\nabla&=\begin{pmatrix}\hat{x}&\hat{y}&\hat{z}\end{pmatrix}\begin{pmatrix}\frac{\partial}{\partial x}\\\frac{\partial}{\partial y}\\\frac{\partial}{\partial z}\end{pmatrix}\\ &=\hat{x}\frac{\partial}{\partial x}+\hat{y}\frac{\partial}{\partial y}+\hat{z}\frac{\partial}{\partial z}\end{aligned} =(x^y^z^)xyz=x^x+y^y+z^z

1.2 并矢

为后文行文方便,引入并矢概念,即对同一基下的两个矢量表示(注意,下标x,y,z和下标1,2,3是等效的,全文可能出现混用)
A ⃗ B ⃗ = ( A 1 B 1 A 1 B 2 A 1 B 3 A 2 B 1 A 2 B 2 A 2 B 3 A 3 B 1 A 3 B 2 A 3 B 3 ) \vec A\vec B=\begin{pmatrix}A_1B_1&A_1B_2&A_1B_3\\A_2B_1&A_2B_2&A_2B_3\\A_3B_1&A_3B_2 & A_3B_3&\end{pmatrix} A B =A1B1A2B1A3B1A1B2A2B2A3B2A1B3A2B3A3B3
例如,Nabla算子作用在矢量函数A上就可以写作
∇ A ⃗ = ( x ^ y ^ z ^ ) ( ∂ A x ∂ x ∂ A y ∂ x ∂ A z ∂ x ∂ A x ∂ y ∂ A y ∂ y ∂ A z ∂ y ∂ A x ∂ z ∂ A y ∂ x ∂ A z ∂ z ) \begin{aligned} \nabla\vec A&=\begin{pmatrix}\hat{x}&\hat{y}&\hat{z}\end{pmatrix}\begin{pmatrix}\frac{\partial A_x}{\partial x}&\frac{\partial A_y}{\partial x}&\frac{\partial A_z}{\partial x}\\\frac{\partial A_x}{\partial y}&\frac{\partial A_y}{\partial y}&\frac{\partial A_z}{\partial y}\\\frac{\partial A_x}{\partial z}&\frac{\partial A_y}{\partial x}&\frac{\partial A_z}{\partial z}\end{pmatrix} \end{aligned} A =(x^y^z^)xAxyAxzAxxAyyAyxAyxAzyAzzAz

1.3 三维正交坐标系与Nabla算子

考虑新的正交三维坐标系的基矢为 ( e ^ 1 e ^ 2 e ^ 3 ) \begin{pmatrix}\hat e_1&\hat e_2&\hat e_3\end{pmatrix} (e^1e^2e^3),选取的独立变数为 ( e 1 e 2 e 3 ) \begin{pmatrix}e_1&e_2&e_3\end{pmatrix} (e1e2e3)。对于两个点
( e 1 e 2 e 3 ) , ( e 1 + d e 1 e 2 + d e 2 e 3 + d e 3 ) \begin{pmatrix}e_1\\e_2\\e_3\end{pmatrix},\begin{pmatrix}e_1+{\rm d} e_1\\e_2+{\rm d}e_2\\e_3+{\rm d}e_3\end{pmatrix} e1e2e3,e1+de1e2+de2e3+de3
定义
d l ⃗ = ( e ^ 1 e ^ 2 e ^ 3 ) ( f 1 d e 1 f 2 d e 2 f 3 d e 3 ) = ∑ i e ^ i f i d e i {\rm d}\vec l=\begin{pmatrix}\hat e_1&\hat e_2&\hat e_3\end{pmatrix}\begin{pmatrix}f_1{\rm d}e_1\\f_2{\rm d}e_2\\f_3{\rm d}e_3\end{pmatrix}=\sum_i\hat e_if_i{\rm d}e_i dl =(e^1e^2e^3)f1de1f2de2f3de3=ie^ifidei
引入度量函数 f i ( e 1 , e 2 , e 3 ) f_i(e_1,e_2,e_3) fi(e1,e2,e3),考虑对一个标量函数 T T T
d T = ∑ i ∂ T ∂ e i d e i {\rm d}T=\sum_i \frac{\partial T}{\partial e_i}{\rm d}e_i dT=ieiTdei
不妨将其写作Nabla算子作用的形式
d T = ∇ T ⋅ d l ⃗ = ∑ i ( ∇ T ) i f i d e i {\rm d}T=\nabla T\cdot{\rm d}\vec l=\sum_i (\nabla T)_if_i{\rm d}e_i dT=Tdl =i(T)ifidei
与上式对比,可以得到
∇ T = ∑ i 1 f i ∂ T ∂ e i \nabla T=\sum_i \frac{1}{f_i}\frac{\partial T}{\partial e_i} T=ifi1eiT
则可以得到Nabla算子在其他坐标系中的表示
∇ = ∑ i e ^ i 1 f i ∂ ∂ e i \nabla =\sum_i \hat e_i\frac{1}{f_i}\frac{\partial}{\partial e_i} =ie^ifi1ei
那么接下来需要解决的问题就是,如何找到合适的度量函数?
度量张量是一个适用范围更广的讨论

1.4 度量张量

黎曼几何里面用来衡量度量空间中矩阵、面积及角度的二阶张量。
引入度量张量是必须考虑到,坐标系无论怎么选取,都不能影响到该情况下计量的结果。
度量张量表示为
d s 2 = ∑ i j g i j d e i d e j {\rm d}s^2=\sum_{ij}g_{ij}{\rm d}e_i{\rm d}e_j ds2=ijgijdeidej
在此定义下, a a a点到 b b b点的弧线长度定义为
L = ∫ a b ∑ i j g i j d x i d t d x j d t d t L=\int_a^b \sqrt{\sum_{ij}g_{ij}\frac{{\rm d}x_i}{{\rm d}t}\frac{{\rm d}x_j}{{\rm d}t}}{\rm d}t L=abijgijdtdxidtdxj dt
若存在一个 R n R^n Rn R n R^n Rn的微分同胚 f f f,则
G = J T J G=J^TJ G=JTJ
其中 J J J为雅可比矩阵

具体实例

  1. 平面极坐标系,独立变数 ρ , ϕ \rho,\phi ρ,ϕ
    { x = ρ cos ⁡ ϕ y = ρ sin ⁡ ϕ \begin{cases} x&=\rho\cos\phi\\ y&=\rho\sin\phi \end{cases} {xy=ρcosϕ=ρsinϕ
    雅可比矩阵
    J = ∂ ( x , y ) ∂ ( ρ , ϕ ) = ( cos ⁡ θ − ρ sin ⁡ θ sin ⁡ θ ρ cos ⁡ θ ) J=\frac{\partial(x,y)}{\partial(\rho,\phi)}=\begin{pmatrix}\cos\theta&-\rho\sin\theta\\\sin\theta&\rho\cos\theta\end{pmatrix} J=(ρ,ϕ)(x,y)=(cosθsinθρsinθρcosθ)
    度量张量
    G = J T J = ( cos ⁡ θ sin ⁡ θ − ρ sin ⁡ θ ρ cos ⁡ θ ) ( cos ⁡ θ − ρ sin ⁡ θ sin ⁡ θ ρ cos ⁡ θ ) = ( 1 0 0 ρ 2 ) G=J^TJ=\begin{pmatrix}\cos\theta&\sin\theta\\-\rho\sin\theta&\rho\cos\theta\end{pmatrix}\begin{pmatrix}\cos\theta&-\rho\sin\theta\\\sin\theta&\rho\cos\theta\end{pmatrix}=\begin{pmatrix}1&0\\0&\rho^2\end{pmatrix} G=JTJ=(cosθρsinθsinθρcosθ)(cosθsinθρsinθρcosθ)=(100ρ2)

    f 1 = 1 , f 2 = ρ f_1=1,f_2=\rho f1=1,f2=ρ
  2. 对于空间柱坐标系 ρ , ϕ , z \rho,\phi,z ρ,ϕ,z,同理可以得到
    f 1 = 1 , f 2 = ρ , f 3 = 1 f_1=1,f_2=\rho,f_3=1 f1=1,f2=ρ,f3=1
  3. 对于空间球坐标系 r , θ , ϕ r,\theta,\phi r,θ,ϕ,同理可以得到
    f 1 = 1 , f 2 = r , f 3 = r sin ⁡ θ f_1=1,f_2=r,f_3=r\sin\theta f1=1,f2=r,f3=rsinθ

1.5 Nabla算子和散度

设有 A ⃗ ( e 1 , e 2 , e 3 ) \vec A(e_1,e_2,e_3) A (e1,e2,e3),而体积元
d τ = ( ∏ i f i ( d e i ) ) {\rm d}\tau=(\prod_i f_i({\rm d}e_i)) dτ=(ifi(dei))
例如对于体积元,在 e ^ 1 \hat e_1 e^1方向上的前表面(指向方向为 − e ^ 1 -\hat e_1 e^1),有
d a ⃗ = − e ^ 1 ( f 2 f 3 ) d e 2 d e 3 {\rm d}\vec a=-\hat e_1(f_2f_3){\rm d}e_2{\rm d}e_3 da =e^1(f2f3)de2de3
该有向面积的指向可以通过外微分形式来判断
A ⃗ \vec A A 在该方向上的散度满足
A ⃗ ⋅ d a ⃗ = F ( e 1 + d e 1 ) − F ( e 1 ) = ∂ ( f 2 f 3 A 1 ) ∂ e 1 d e 1 \vec A\cdot{\rm d}\vec a=F(e_1+{\rm d}e_1)-F(e_1)=\frac{\partial (f_2f_3A_1)}{\partial e_1}{\rm d}e_1 A da =F(e1+de1)F(e1)=e1(f2f3A1)de1
则整个体积元在该方向上贡献
∂ ( f 2 f 3 A 1 ) ∂ e 1 d e 1 d e 2 d e 3 = 1 ∏ i f i ∂ ( f 2 f 3 A 1 ) ∂ e 1 d τ \frac{\partial (f_2f_3A_1)}{\partial e_1}{\rm d}e_1{\rm d}e_2{\rm d}e_3=\frac{1}{\prod_i f_i}\frac{\partial (f_2f_3A_1)}{\partial e_1}{\rm d}\tau e1(f2f3A1)de1de2de3=ifi1e1(f2f3A1)dτ
根据Stokes公式,取极限后
∇ ⋅ A ⃗ = 1 ∏ i f i ( ∑ i ∂ ( f i + 1 f i + 2 A i ) ∂ e i ) \nabla\cdot\vec A=\frac{1}{\prod_i f_i} \left( \sum_i \frac{\partial (f_{i+1}f_{i+2}A_i)}{\partial e_i}\right) A =ifi1(iei(fi+1fi+2Ai))
这里的 i + 1 , i + 2 i+1,i+2 i+1,i+2可以理解为下标的循环。
则立即可以得到
∇ ⋅ ( ∇ T ) = 1 ∏ i f i ( ∑ i ∂ ∂ e i f i + 1 f i + 2 f i ∂ T ∂ e i ) \nabla\cdot(\nabla T)=\frac{1}{\prod_i f_i} \left( \sum_i \frac{\partial }{\partial e_i}\frac{f_{i+1}f_{i+2}}{f_i}\frac{\partial T}{\partial e_i}\right) (T)=ifi1(ieififi+1fi+2eiT)

1.5 Nabla算子和旋度

考虑在 e 3 e_3 e3平面上,有向面积元
d a ⃗ = e ^ 3 ( f 1 f 2 ) d e 1 d e 2 {\rm d}\vec a=\hat e_3(f_1f_2){\rm d}e_1{\rm d}e_2 da =e^3(f1f2)de1de2
对于沿着坐标网格的曲线 e 1 e_1 e1线积分,有
[ − ( f 1 A 1 ) ∣ e 2 + d e 2 + ( f 1 A 1 ) ∣ e 2 ] d e 1 = − [ ∂ ∂ e 2 ( f 1 A 1 ) ] d e 1 d e 2 [-(f_1A_1)|_{e_2+{\rm d}e_2}+(f_1A_1)|_{e_2}]{\rm d}e_1=-\left[\frac{\partial}{\partial e_2}(f_1A_1)\right]{\rm d}e_1{\rm d}e_2 [(f1A1)e2+de2+(f1A1)e2]de1=[e2(f1A1)]de1de2
同理对于另一对 e 2 e_2 e2线,则贡献为
[ ∂ ∂ e 1 ( f 2 A 2 ) ] d e 1 d e 2 \left[\frac{\partial}{\partial e_1}(f_2A_2)\right]{\rm d}e_1{\rm d}e_2 [e1(f2A2)]de1de2
则按照格林公式计算,最终结果为
∇ × A ⃗ = ∑ i e ^ i f i + 1 f i + 2 [ ∂ ∂ e i + 1 ( f i + 2 A i + 2 ) − ∂ ∂ e i + 2 ( f i + 1 A i + 1 ) ] \nabla\times\vec A=\sum_i\frac{\hat e_i}{f_{i+1}f_{i+2}}\left[\frac{\partial}{\partial e_{i+1}}(f_{i+2}A_{i+2})-\frac{\partial}{\partial e_{i+2}}(f_{i+1}A_{i+1})\right] ×A =ifi+1fi+2e^i[ei+1(fi+2Ai+2)ei+2(fi+1Ai+1)]

2 矢量分析公式

2.1 不满足交换律的展开

A ⃗ , B ⃗ , C ⃗ \vec A,\vec B,\vec C A ,B ,C 表示三个矢量,在相乘不可以交换顺序和互相结合的情况下,
[ A ⃗ × ( B ⃗ × C ⃗ ) ] z = [ A x ( B z C x ) + A y ( B z C y ) + A z ( B z C z ) ] − [ A x ( B x C z ) + A y ( B y C z ) + A z ( B z C z ) ] [ ( A ⃗ × B ⃗ ) × C ⃗ ] z = [ ( A x B z ) C x + ( A y B z ) C y + ( A z B z ) C z ] − [ ( A z B x ) C x + ( A z B y ) C y + ( A z B z ) C z ] [\vec A\times(\vec B\times\vec C)]_z=[A_x(B_zC_x)+A_y(B_zC_y)+A_z(B_zC_z)]-[A_x(B_xC_z)+A_y(B_yC_z)+A_z(B_zC_z)]\\ [(\vec A\times\vec B)\times\vec C]_z=[(A_xB_z)C_x+(A_yB_z)C_y+(A_zB_z)C_z]-[(A_zB_x)C_x+(A_zB_y)C_y+(A_zB_z)C_z] [A ×(B ×C )]z=[Ax(BzCx)+Ay(BzCy)+Az(BzCz)][Ax(BxCz)+Ay(ByCz)+Az(BzCz)][(A ×B )×C ]z=[(AxBz)Cx+(AyBz)Cy+(AzBz)Cz][(AzBx)Cx+(AzBy)Cy+(AzBz)Cz]
当可以交换顺序和乘法结合时,即为常见的展开
A ⃗ × ( B ⃗ × C ⃗ ) = ( A ⃗ ⋅ C ⃗ ) B ⃗ − ( A ⃗ ⋅ B ⃗ ) C ⃗ ( A ⃗ × B ⃗ ) × C ⃗ = ( A ⃗ ⋅ C ⃗ ) B ⃗ − ( C ⃗ ⋅ B ⃗ ) A ⃗ \vec A\times(\vec B\times\vec C)=(\vec A\cdot\vec C)\vec B-(\vec A\cdot\vec B)\vec C \\ (\vec A\times\vec B)\times\vec C=(\vec A\cdot\vec C)\vec B-(\vec C\cdot\vec B)\vec A A ×(B ×C )=(A C )B (A B )C (A ×B )×C =(A C )B (C B )A

2.2 nabla算子的运算规则

nabla算子需要在注意微分运算的同时,注意到不可以随意交换分量之间的顺序的问题
(放到量子力学里面,就是算符对易与否的问题)
(但这里的公式,已经将需要作用的函数写上了;量子力学中的算符运算,一般省略后面的作用函数不写,所以结果有微妙的区别)
以下公式中, c c c表示任意常数, α , β \alpha,\beta α,β表示一标量函数,而 A ⃗ , B ⃗ , C ⃗ \vec A,\vec B,\vec C A ,B ,C 表示一矢量函数

  1. 含常量组,非常简单
    ∇ ( c α ) = c ∇ α ∇ ⋅ ( c A ⃗ ) = c ( ∇ ⋅ A ⃗ ) ∇ × ( c A ⃗ ) = c ( ∇ × A ⃗ ) \begin{aligned} \nabla(c\alpha)&=c\nabla\alpha\\ \nabla\cdot(c\vec A)&=c(\nabla\cdot\vec A)\\ \nabla\times(c\vec A)&=c(\nabla\times\vec A)\\ \end{aligned} (cα)(cA )×(cA )=cα=c(A )=c(×A )
  2. 梯度组
    ∇ ( α β ) = α ( ∇ β ) + ( ∇ α ) β ∇ ( A ⃗ ⋅ B ⃗ ) = A ⃗ × ( ∇ × B ⃗ ) + B ⃗ × ( ∇ × A ⃗ ) + ( A ⃗ ⋅ ∇ ) B ⃗ + ( B ⃗ ⋅ ∇ ) A ⃗ , 在 这 里 要 求 交 换 ∇ ( ∇ ⋅ A ⃗ ) = 不 展 开 计 算 \begin{aligned} \nabla(\alpha\beta)&=\alpha(\nabla\beta)+(\nabla\alpha)\beta\\ \nabla(\vec A\cdot\vec B)&=\vec A\times(\nabla\times \vec B)+\vec B\times(\nabla\times \vec A)+(\vec A\cdot\nabla)\vec B+(\vec B\cdot\nabla)\vec A,在这里要求交换\\ \nabla(\nabla\cdot\vec A)&=不展开计算\\ \end{aligned} (αβ)(A B )(A )=α(β)+(α)β=A ×(×B )+B ×(×A )+(A )B +(B )A =
  3. 散度组
    ∇ ⋅ ( α A ⃗ ) = ( ∇ α ) ⋅ A ⃗ + α ( ∇ ⋅ A ⃗ ) ∇ ⋅ ( A ⃗ × B ⃗ ) = ( ∇ × A ⃗ ) ⋅ B ⃗ − A ⃗ ⋅ ( ∇ × B ⃗ ) ∇ ⋅ ( ∇ α ) = Δ α ∇ ⋅ ( ∇ × A ⃗ ) = 0 \begin{aligned} \nabla\cdot(\alpha\vec A)&=(\nabla\alpha)\cdot\vec A+\alpha(\nabla\cdot\vec A)\\ \nabla\cdot(\vec A\times\vec B)&=(\nabla\times\vec A)\cdot\vec B-\vec A\cdot(\nabla\times\vec B)\\ \nabla\cdot(\nabla\alpha)&=\Delta\alpha\\ \nabla\cdot(\nabla\times\vec A)&=0\\ \end{aligned} (αA )(A ×B )(α)(×A )=(α)A +α(A )=(×A )B A (×B )=Δα=0
  4. 旋度组
    ∇ × ( α A ⃗ ) = ( ∇ α ) × A ⃗ + α ( ∇ × A ⃗ ) ∇ × ( A ⃗ × B ⃗ ) = ( B ⃗ ⋅ ∇ ) A ⃗ + A ⃗ ( ∇ ⋅ B ⃗ ) − ( A ⃗ ⋅ ∇ ) B ⃗ − B ⃗ ( ∇ ⋅ A ⃗ ) , 同 样 要 求 交 换 ∇ × ( ∇ α ) = 0 ∇ × ( ∇ × A ⃗ ) = 0 \begin{aligned} \nabla\times(\alpha\vec A)&=(\nabla\alpha)\times\vec A+\alpha(\nabla\times\vec A)\\ \nabla\times(\vec A\times\vec B)&=(\vec B\cdot\nabla)\vec A+\vec A(\nabla\cdot\vec B)-(\vec A\cdot\nabla)\vec B-\vec B(\nabla\cdot\vec A),同样要求交换\\ \nabla\times(\nabla\alpha)&=0\\ \nabla\times(\nabla\times\vec A)&=0\\ \end{aligned} ×(αA )×(A ×B )×(α)×(×A )=(α)×A +α(×A )=(B )A +A (B )(A )B B (A )=0=0

Reference

David J. Griffiths, Introduction to electrodynamics[M].1999

  • 13
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值