浅谈Green函数法

word格上传真是灾难
好在当时留了markdown的副本

调整了一下文本的结构

1 Green函数的相关概念

Green函数又称点源函数或影响函数,表示在 M 0 M_0 M0点的点源对任意场点 M M M的影响,记为 G ( M , M 0 ) G(M,M_0) G(M,M0). 如果Green函数 G ( M , M 0 ) G(M,M_0) G(M,M0)已知,则分布在任意区域 Ω \Omega Ω内的“源”对 M M M点的影响可以写成
u ( M ) = ∫ Ω G ( M , M 0 ) ρ ( M 0 ) d M 0 u(M)=\int_\Omega^{}G(M,M_0)\rho(M_0)\mathrm{d}M_0 u(M)=ΩG(M,M0)ρ(M0)dM0
其中 ρ \rho ρ为源密度, d M 0 \mathrm{d}M_0 dM0为包含 M 0 M_0 M0的微元.
当所要讨论的物理场带有边界条件和(或)初始条件时,Green函数还要与这些边界条件和(或)初始条件有关,因此一般说来,Green函数是一个点源在一定的边界条件和(或)初始条件下所产生的场,利用Green函数,可以求出任意分布的源所产生的场.

1.1 Poisson方程边值问题的Green函数法

三维Poisson方程
{ Δ u ( M ) = − h ( M ) , M ∈ Ω [ α ∂ u ∂ n + β u ] ∣ ∂ Ω = g ( M ) , M ∈ Ω \begin{cases}\Delta u(M)=-h(M),M\in\Omega\\\left[\alpha\frac{\partial u}{\partial n}+\beta u\right]\Bigg|_{\partial\Omega}^{}=g(M),M\in\Omega\end{cases} Δu(M)=h(M),MΩ[αnu+βu]Ω=g(M),MΩ
其中 ∂ Ω \partial\Omega Ω Ω \Omega Ω的边界.
G ( M , M 0 ) G(M,M_0) G(M,M0)是满足方程
Δ G ( M , M 0 ) = − δ ( M , M 0 ) , M ∈ Ω \Delta G(M,M_0)=-\delta(M,M_0),M\in\Omega ΔG(M,M0)=δ(M,M0),MΩ
的Green函数,则三维Poisson方程的解可以表示为
u ( M ) = ∭ Ω G ( M , M 0 ) h ( M 0 ) d Ω 0 + ∬ ∂ Ω G ( M , M 0 ) ∂ u ∂ n 0 d S 0 − ∬ ∂ Ω u ( M 0 ) ∂ G ( M , M 0 ) ∂ n 0 d S 0 . u(M)=\iiint_\Omega^{}G(M,M_0)h(M_0)\mathrm{d}\Omega_0+\iint_{\partial\Omega}^{}G(M,M_0)\frac{\partial u}{\partial n_0}\mathrm{d}S_0-\iint_{\partial\Omega}^{}u(M_0)\frac{\partial G(M,M_0)}{\partial n_0}\mathrm{d}S_0. u(M)=ΩG(M,M0)h(M0)dΩ0+ΩG(M,M0)n0udS0Ωu(M0)n0G(M,M0)dS0.

  1. 第一类边界条件 α = 0 \alpha=0 α=0,即 u ∣ ∂ Ω = 1 β g ( M ) = f ( M ) u|_{\partial\Omega}^{}=\frac{1}{\beta}g(M)=f(M) uΩ=β1g(M)=f(M)
    这时要求 G ( M , M 0 ) G(M,M_0) G(M,M0)满足第一类齐次边界条件 G ( M , M 0 ) ∣ ∂ Ω = 0 G(M,M_0)|{\partial\Omega^{}}=0 G(M,M0)Ω=0 ,方程的解为
    u ( M ) = ∭ Ω G ( M , M 0 ) h ( M 0 ) d Ω 0 − ∬ ∂ Ω u ( M 0 ) ∂ G ( M , M 0 ) ∂ n 0 d S 0 . u(M)=\iiint_\Omega^{}G(M,M_0)h(M_0)\mathrm{d}\Omega_0-\iint_{\partial\Omega}^{}u(M_0)\frac{\partial G(M,M_0)}{\partial n_0}\mathrm{d}S_0. u(M)=ΩG(M,M0)h(M0)dΩ0Ωu(M0)n0G(M,M0)dS0.
  2. 第二类边界条件 β = 0 \beta=0 β=0,即 ∂ u ∂ n ∣ ∂ Ω = 1 α g ( M ) = f ( M ) \frac{\partial u}{\partial n}\Bigg|_{\partial\Omega}^{}=\frac{1}{\alpha}g(M)=f(M) nuΩ=α1g(M)=f(M)
    这时要求 G ( M , M 0 ) G(M,M_0) G(M,M0)满足边界条件
    ∂ G ∂ n ∣ ∂ Ω = − 1 Σ \frac{\partial G}{\partial n}\Bigg|_{\partial\Omega}^{}=-\frac{1}{\Sigma} nGΩ=Σ1
    其中 Σ \Sigma Σ ∂ Ω \partial\Omega Ω的面积,方程的解为
    u ( M ) = c + ∭ Ω G ( M , M 0 ) h ( M 0 ) d Ω 0 + ∬ ∂ Ω G ( M , M 0 ) f ( M 0 ) d S 0 u(M)=c+\iiint_\Omega^{}G(M,M_0)h(M_0)\mathrm{d}\Omega_0+\iint_{\partial\Omega}^{}G(M,M_0)f(M_0)\mathrm{d}S_0 u(M)=c+ΩG(M,M0)h(M0)dΩ0+ΩG(M,M0)f(M0)dS0
    其中 c c c为待定常数.
  3. 第三类边界条件,定解问题为三维Poisson方程的形式
    这是要求 G ( M , M 0 ) G(M,M_0) G(M,M0)满足第三类其次边界条件
    [ α ∂ G ∂ n + β G ] ∣ ∂ Ω = 0 \left[\alpha\frac{\partial G}{\partial n}+\beta G\right]\Bigg|_{\partial\Omega}^{}=0 [αnG+βG]Ω=0
    方程的解为
    u ( M ) = ∭ Ω G ( M , M 0 ) h ( M 0 ) d Ω 0 + 1 α ∬ ∂ Ω G ( M , M 0 ) g ( M 0 ) d S 0 u(M)=\iiint_\Omega^{}G(M,M_0)h(M_0)\mathrm{d}\Omega_0+\frac{1}{\alpha}\iint_{\partial\Omega}^{}G(M,M_0)g(M_0)\mathrm{d}S_0 u(M)=ΩG(M,M0)h(M0)dΩ0+α1ΩG(M,M0)g(M0)dS0

1.2 Green函数的对易性质

前两天被问了Green函数如何证明对易性,这是一个很有意思的练习题。
大致思路是作差,然后用极值必定在边界上取得,在边界上都是0,所以恒为零即恒相等。
G ( M , M 0 ) = G ( M 0 , M ) G(M,M_0)=G(M_0,M) G(M,M0)=G(M0,M)

1.3 Green函数的一般求法

  1. 无界区域的Green函数
    三维无界区域Green函数,即方程 Δ G = − δ ( x − x 0 , y − y 0 , z − z 0 ) \Delta G=-\delta(x-x_0,y-y_0,z-z_0) ΔG=δ(xx0,yy0,zz0)的解是
    G ( M , M 0 ) = 1 4 π r M M 0 = 1 4 π ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 G(M,M_0)=\frac{1}{4\pi r_{MM_0}}=\frac{1}{4\pi\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}} G(M,M0)=4πrMM01=4π(xx0)2+(yy0)2+(zz0)2 1
    二维无界区域Green函数,即方程 Δ G = − δ ( x − x 0 , y − y 0 ) \Delta G=-\delta(x-x_0,y-y_0) ΔG=δ(xx0,yy0)的解是
    G ( M , M 0 ) = 1 2 π ln ⁡ 1 r M M 0 = 1 2 π ln ⁡ [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 ] G(M,M_0)=\frac{1}{2\pi}\ln\frac{1}{ r_{MM_0}}=\frac{1}{2\pi}\ln\left[\frac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2}}\right] G(M,M0)=2π1lnrMM01=2π1ln[(xx0)2+(yy0)2 1]
  2. 本征函数求下列第一类齐次边值问题
    { Δ G ( M , M 0 ) + λ G ( M , M 0 ) = − δ G ( M , M 0 ) , M ∈ Ω G ( M , M 0 ) ∣ ∂ Ω = 0 \begin{cases}\Delta G(M,M_0)+\lambda G(M,M_0)=-\delta G(M,M_0),M\in\Omega\\G(M,M_0)|_{\partial\Omega}^{}=0\end{cases} { ΔG(M,M0)+λG(M,M0)=δG(M,M0),MΩG(M,M0)Ω=0
    Green函数为
    G ( M , M 0 ) = ∑ n 1 λ n − λ ψ n ‾ ( M 0 ) ψ ( M ) G(M,M_0)=\sum_{n}^{}\frac{1}{\lambda_n-\lambda}\overline{\psi_n}(M_0)\psi(M) G(M,M0)=nλnλ1ψn(M0)ψ(M)
    其中 λ \lambda λ ψ \psi ψ为本征值问题
    { Δ ψ ( M ) + λ ψ ( M ) = 0 , M ∈ Ω ψ ( M ) ∣ ∂ Ω = 0 \begin{cases}\Delta\psi(M)+\lambda\psi(M)=0,M\in\Omega\\\psi(M)|_{\partial\Omega}^{}=0\end{cases} { Δψ(M)+λψ(M)=0,MΩψ(M)Ω=0
    的本征值和本征函数.

1.4 电像法与某些特殊区域的第一类边界条件问题的Green函数

把带有边界问题的Green函数分成无界情况和边界的影响两部分,将边界的影响看成源点关于边界的对称点(成为像点)的影响,再通过物理的和几何的知识求出这一影响的方法称为电像法.

电像法的正确性是唯一性定理保证的,所以请放心大胆的使用。
电像法给了延拓的灵感。

  1. 球域 ( ρ ≤ a ) (\rho\leq a) (ρa)的Green函数
    Laplace方程第一类边值问题
    { Δ u = 0 , ρ &lt; a u ∣ ρ = a = f ( M ) \begin{cases}\Delta u=0,\rho&lt;a\\u|_{\rho=a}^{}=f(M)\end{cases} { Δu=0,ρ<auρ=a=f(M)
    的Green函数为
    G ( M , M 0 ) = 1 4 π r M M 0 − a / ρ 0 4 π r M M 1 G(M,M_0)=\frac{1}{4\pi r_{MM_0}}-\frac{a/\rho_0}{4\pi r_{MM_1}} G(M,M0)=4πrMM014πrMM1a/ρ0
    定解问题的解为
    u ( ρ , θ , φ ) = a 4 π ∫ 0 2 π ∫ 0 π f ( θ 0 , φ 0 ) a 2 − ρ 2 ( a 2 + ρ 2 − 2 a ρ cos ⁡ γ ) 3 / 2 sin ⁡ θ 0 d θ 0 d φ 0 u(\rho,\theta,\varphi)=\frac{a}{4\pi}\int_0^{2\pi}\int_0^\pi f(\theta_0,\varphi_0)\frac{a^2-\rho^2}{(a^2+\rho^2-2a\rho\cos\gamma)^{3/2}}\sin\theta_0\mathrm{d}\theta_0\mathrm{d}\varphi_0 u(ρ,θ,φ)=4πa02π0πf(θ0,φ0)(a2+ρ22aρcosγ)3/2a2ρ2sinθ0dθ0dφ0
    其中 a a a为球面半径,其余量 r M M 0 , r M M 1 , ρ 0 r_{MM_0},r_{MM_1},\rho_0 r
  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值