哈密顿算子在直角坐标系的矩阵表示

∇ = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] , ∇ × = [ 0 − ∂ ∂ z ∂ ∂ y ∂ ∂ z 0 − ∂ ∂ x − ∂ ∂ y ∂ ∂ x 0 ] , ∇ 2 = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] T [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] = ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) \nabla= \begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}, \nabla \times = \begin{bmatrix} 0 & -\frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial x} \\\\ -\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix}, \nabla^2= \begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}^T \begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix} =(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}) =xyz×=0zyz0xyx02=xyzTxyz=(x22+y22+z22)

(1) ∇ ϕ = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ϕ = [ ∂ ϕ ∂ x ∂ ϕ ∂ y ∂ ϕ ∂ z ] \nabla \phi=\begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}\phi=\begin{bmatrix} \frac{\partial \phi}{\partial x} \\\\ \frac{\partial \phi}{\partial y} \\\\ \frac{\partial \phi}{\partial z} \end{bmatrix}\tag 1 ϕ=xyzϕ=xϕyϕzϕ(1) (2) ∇ ⋅ A ⃗ = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] T [ A x A y A z ] \nabla \cdot \vec A =\begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}^T\begin{bmatrix} A_x \\\\ A_y \\\\ A_z \end{bmatrix}\tag 2 A =xyzTAxAyAz(2) (3) ∇ × A ⃗ = [ 0 − ∂ ∂ z ∂ ∂ y ∂ ∂ z 0 − ∂ ∂ x − ∂ ∂ y ∂ ∂ x 0 ] [ A x A y A z ] \nabla \times \vec A = \begin{bmatrix} 0 & -\frac{\partial }{\partial z} & \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial x} \\\\ -\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix}\begin{bmatrix} A_x \\\\ A_y \\\\ A_z \end{bmatrix}\tag 3 ×A =0zyz0xyx0AxAyAz(3) (4) ∇ 2 ϕ = ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) ϕ \nabla^2\phi=(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})\phi\tag 4 2ϕ=(x22+y22+z22)ϕ(4)

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值