浅谈Green公式和外微分形式

数学分析大作业6,时隔一年半才想起来没发。
衷心感谢北航的杨小远老师。
希望学弟学妹们能够继续认真的完成杨老师的大作业。

经过一年半的继续学习和理解才发现
Green公式的作用,到用Green函数解偏微分方程时候才能真正体现出来。
Green函数法解偏微分方程,具体就有很多应用了。
比如,简单的静电场的边值问题,直接就是Green函数模型提出的背景
比如,量子力学计算散射问题,声子的引入就类似于Green函数提出的思想。

关于外微分形式,是出于如何理解stokes定理和Green定理诡异的相似性而衍生出来的讨论。这个讨论在龚老师的《简明微积分》里有比较全面的讨论,文中的部分也主要来自于《简明微积分》
强烈安利《简明微积分》,这本书看完以后,对于微积分的理解会更上升一个层次。

关于雅可比行列式的讨论,其实可以归结到度量张量底下。这一部分内容如果用坐标系的选择与换元,和nabla算子在不同坐标系下的形式联系起来会更有趣。继续静待后文。

1 二维平面上的Green公式

1.1 单连通区域上的Green公式

S S S是由分段光滑的封闭曲线 C C C围成的闭区域,满足(1)向量场 F = ( P ( x , y ) , Q ( x , y ) ) F=(P(x,y),Q(x,y)) F=(P(x,y),Q(x,y)) S S S上连续;(2) P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y) S S S上有连续的一阶偏导数,则成立
∬ S ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∫ C P d x + Q d y ∬ S ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∫ C [ P cos ⁡ ( t , x ) + Q cos ⁡ ( t , y ) ] d s \iint_S\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy=\int_CPdx+Qdy\\\iint_S\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy=\int_C[P\cos(t,x)+Q\cos(t,y)]ds S(xQyP)dxdy=CPdx+QdyS(xQyP)dxdy=C[Pcos(t,x)+Qcos(t,y)]ds
C C C正向. ( cos ⁡ ( t , x ) , cos ⁡ ( t , y ) ) (\cos(t,x),\cos(t,y)) (cos(t,x),cos(t,y)) C C C正向一致的切线方向.

n ⃗ \vec{n} n C C C的外法线单位向量,则
∬ S ( ∂ P ∂ x + ∂ Q ∂ y ) d x d y = ∫ C [ P cos ⁡ ( n ⃗ , x ) + Q cos ⁡ ( n ⃗ , y ) ] d s \iint_S\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right)dxdy=\int_C[P\cos(\vec{n},x)+Q\cos(\vec{n},y)]ds S(xP+yQ)dxdy=C[Pcos(n ,x)+Qcos(n ,y)]ds

注意 ( a ⃗ , b ⃗ ) (\vec{a},\vec{b}) (a ,b )表示向量 b ⃗ \vec{b} b 转到向量 a ⃗ \vec{a} a 走过的角度,则有
( t , x ) = ( n ⃗ , x ) + π 2 , ( t , y ) = ( n ⃗ , y ) + π 2 , ( t , x ) = ( t , y ) + π 2 cos ⁡ ( t , x ) = − c o s ( n ⃗ , y ) , cos ⁡ ( t , y ) = cos ⁡ ( n ⃗ , x ) (t,x)=(\vec{n},x)+\frac{\pi}{2},(t,y)=(\vec{n},y)+\frac{\pi}{2},(t,x)=(t,y)+\frac{\pi}{2}\\\cos(t,x)=-cos(\vec{n},y), \cos(t,y)=\cos(\vec{n},x) (t,x)=(n ,x)+2π,(t,y)=(n ,y)+2π,(t,x)=(t,y)+2πcos(t,x)=cos(n ,y),cos(t,y)=cos(n ,x)

Green第一公式

C C C为封闭光滑曲线, S S S C C C围成的区域, u u u有连续的二阶偏导数, ω \omega ω有连续的偏导数, n ⃗ \vec{n} n C C C的外法线单位向量,取 C C C的正向,则
∬ S ω ∂ u ∂ x d x d y + ∬ S u ∂ ω ∂ x d x d y = ∫ C u w d y ∬ S ω Δ u d x d y + ∬ S ( ∂ u ∂ x ∂ ω ∂ x + ∂ u ∂ y ∂ ω ∂ y ) d x d y = ∫ C ω ∂ u ∂ n ⃗ d s \iint_S\omega\frac{\partial u}{\partial x}dxdy+\iint_Su\frac{\partial\omega}{\partial x}dxdy=\int_Cuwdy\\\iint_S\omega\Delta udxdy+\iint_S\left(\frac{\partial u}{\partial x}\frac{\partial\omega}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial\omega}{\partial y}\right)dxdy=\int_C\omega\frac{\partial u}{\partial\vec{n}}ds Sωxudxdy+Suxωdxdy=CuwdySωΔudxdy+S(xuxω+yuyω)dxdy=Cωn uds
特别地,当 ω = u \omega=u ω=u时,有
∬ S [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 ] d x d y + ∬ S u Δ u d x d y = ∮ C u ∂ u ∂ n ⃗ d s \iint_S\left[\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2\right]dxdy+\iint_Su\Delta udxdy=\oint_Cu\frac{\partial u}{\partial\vec{n}}ds S[(xu)2+(yu)2]dxdy+SuΔudxdy=Cun uds
证明 注意到
ω ∂ u ∂ n ⃗ = ω ∂ u ∂ x cos ⁡ ( n ⃗ , x ) + ω ∂ u ∂ y cos ⁡ ( n ⃗ , y ) \omega\frac{\partial u}{\partial\vec{n}}=\omega\frac{\partial u}{\partial x}\cos(\vec{n},x)+\omega\frac{\partial u}{\partial y}\cos(\vec{n},y) ωn u=ωxucos(n ,x)+ωyucos(n ,y)
即可得到结论.

Green第二公式

C C C为封闭光滑曲线, S S S C C C围成的区域, u , v u, v u,v有连续的二阶偏导数, n ⃗ \vec{n} n C C C的外法线单位向量,取 C C C的正向,则
∬ S ∣ Δ u Δ v u v ∣ d x d y = ∮ c ∣ ∂ u ∂ n ⃗ ∂ v ∂ n ⃗ u v ∣ d s \iint_S\begin{vmatrix}\Delta u&\Delta v\\u&v\end{vmatrix}dxdy=\oint_c\begin{vmatrix}\frac{\partial u}{\partial\vec{n}}&\frac{\partial v}{\partial\vec{n}}\\u&v\end{vmatrix}ds SΔuuΔvvdxdy=cn uun vvds
证明 在Green第一公式中分别取 u , v u,v u,v并交换位置,得
∬ S v Δ u d x d y + ∬ S ( ∂ u ∂ x ∂ v ∂ x + ∂ u ∂ y ∂ v ∂ y ) d x d y = ∫ C v ∂ u ∂ n ⃗ d s ∬ S u Δ v d x d y + ∬ S ( ∂ v ∂ x ∂ u ∂ x + ∂ v ∂ y ∂ u ∂ y ) d x d y = ∫ C u ∂ v ∂ n ⃗ d s \iint_Sv\Delta udxdy+\iint_S\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial v}{\partial y}\right)dxdy=\int_Cv\frac{\partial u}{\partial\vec{n}}ds\\\iint_Su\Delta vdxdy+\iint_S\left(\frac{\partial v}{\partial x}\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\frac{\partial u}{\partial y}\right)dxdy=\int_Cu\frac{\partial v}{\partial\vec{n}}ds SvΔudxdy+S(xuxv+yuyv)dxdy=Cvn udsSuΔvdxdy+S(xvxu+yvyu)dxdy=Cun vds
两等式作差,即得结论.

Green第三公式

u u u为有界闭区域 S S S内的调和函数, C C C S S S的边界, ∂ u ∂ n ⃗ \frac{\partial u}{\partial\vec{n}} n u u u u沿着 C C C的单位外法线的方向导数, r ⃗ = ( a − x , b − y ) \vec{r}=(a-x,b-y) r =(ax,by), r = ( a − x ) 2 + ( b − y ) 2 r=\sqrt{(a-x)^2+(b-y)^2} r=(ax)2+(by)2 ( x , y ) (x,y) (x,y) C C C上动点 ( a , b ) (a,b) (a,b)之间的距离,则
u ( x , y ) = 1 2 π ∮ C ( u cos ⁡ ( r ⃗ , n ⃗ ) r − ln ⁡ r ∂ u ∂ n ⃗ ) d s = 1 2 π ∮ C ( u ∂ ln ⁡ r ∂ n ⃗ − ln ⁡ r ∂ u ∂ n ⃗ ) d s u(x,y)=\frac{1}{2\pi}\oint_C\left(u\frac{\cos(\vec{r},\vec{n})}{r}-\ln r\frac{\partial u}{\partial\vec{n}}\right)ds=\frac{1}{2\pi}\oint_C\left(u\frac{\partial\ln r}{\partial\vec{n}}-\ln r\frac{\partial u}{\partial\vec{n}}\right)ds u(x,y)=2π1C(urcos(r ,n )lnrn u)ds=2π1C(un lnrlnrn u)ds
证明 在结论等式中有一点需要额外说明
cos ⁡ ( r ⃗ , n ⃗ ) r = 1 r a − x r cos ⁡ ( n ⃗ , x ) + 1 r y − b r cos ⁡ ( n ⃗ , y ) = ∂ ln ⁡ r ∂ n ⃗ \frac{\cos(\vec{r},\vec{n})}{r}=\frac{1}{r}\frac{a-x}{r}\cos(\vec{n},x)+\frac{1}{r}\frac{y-b}{r}\cos(\vec{n},y)=\frac{\partial\ln r}{\partial\vec{n}} rcos(r ,n )=r1raxcos(n ,x)+r1rybcos(n ,y)=n lnr

∂ 2 ln ⁡ r ∂ a 2 + ∂ 2 ln ⁡ r ∂ b 2 = r 2 − 2 ( a − x ) 2 r 4 + r 2 − 2 ( b − y ) 2 r 4 = 2 r 2 − 2 r 2 r 4 = 0 , r ≠ 0 \frac{\partial^2\ln r}{\partial a^2}+\frac{\partial^2\ln r}{\partial b^2}=\frac{r^2-2(a-x)^2}{r^4}+\frac{r^2-2(b-y)^2}{r^4}=\frac{2r^2-2r^2}{r^4}=0,r\neq0 a22lnr+b22lnr=r4r22(ax)2+r4r22(by)2=r42r22r2=0,r̸=0

ln ⁡ r , r ≠ 0 \ln r,r\neq 0 lnr,r̸=0为调和函数.设 S 0 = { ( a , b ) ∣ ( a − x ) 2 + ( b − y ) 2 ≤ ρ 2 } ⊂ S S_0=\{(a,b)|(a-x)^2+(b-y)^2\le \rho^2\}\subset S S0={(a,b)(ax)2+(by)2ρ2}S, C 0 C_0 C0 S 0 S_0 S0的边界,则
∮ C − C 0 ∣ ∂ ln ⁡ r ∂ n ⃗ ∂ u ∂ n ⃗ ln ⁡ r u ∣ d s = ∬ S − S 0 ∣ Δ ln ⁡ r Δ u ln ⁡ r u ∣ d a d b = 0 \oint_{C-C_0}\begin{vmatrix}\frac{\partial\ln r}{\partial\vec{n}}&\frac{\partial u}{\partial\vec{n}}\\\ln r&u\end{vmatrix}ds=\iint_{S-S_0}\begin{vmatrix}\Delta\ln r&\Delta u\\\ln r&u\end{vmatrix}dadb=0 CC0n lnrlnrn uuds=SS0ΔlnrlnrΔuudadb=0

∮ C ∣ ∂ ln ⁡ r ∂ n ⃗ ∂ u ∂ n ⃗ ln ⁡ r u ∣ d s = ∮ C 0 ∣ ∂ ln ⁡ r ∂ n ⃗ ∂ u ∂ n ⃗ ln ⁡ r u ∣ d s = 1 ρ ∮ C 0 u d s − ln ⁡ ρ ∮ C 0 ∂ u ∂ n ⃗ d s = 2 π u ( x + θ 1 ρ , y + θ 2 ρ ) , 0 &lt; θ 1 &lt; 1 , 0 &lt; θ 2 &lt; 1 \begin{aligned}\oint_C\begin{vmatrix}\frac{\partial\ln r}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\ln r&amp;u\end{vmatrix}ds&amp;=\oint_{C_0}\begin{vmatrix}\frac{\partial\ln r}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\ln r&amp;u\end{vmatrix}ds\\&amp;=\frac{1}{\rho}\oint_{C_0}uds-\ln\rho\oint_{C_0}\frac{\partial u}{\partial\vec{n}}ds\\&amp;=2\pi u(x+\theta_1\rho,y+\theta_2\rho),0&lt;\theta_1&lt;1,0&lt;\theta_2&lt;1\end{aligned} Cn lnrlnrn uuds=C0n lnrlnrn uuds=ρ1C0udslnρC0n uds=2πu(x+θ1ρ,y+θ2ρ),0<θ1<1,0<θ2<1

对上式取极限 ρ → 0 + \rho\to0^+ ρ0+,注意到 u ( x , y ) u(x,y) u(x,y)的连续性,则证毕.

调和函数的中值定理

Δ u = 0 , C ∗ = { ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 = R 2 } , S ∗ = { ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ R 2 } \Delta u=0,C^*=\{(x,y)|(x-x_0)^2+(y-y_0)^2=R^2\},S^*=\{(x,y)|(x-x_0)^2+(y-y_0)^2\le R^2\} Δu=0,C={(x,y)(xx0)2+(yy0)2=R2},S={(x,y)(xx0)2+(yy0)2R2},则
u ( x 0 , y 0 ) = 1 2 π R ∮ C ∗ u ( x , y ) d s u(x_0,y_0)=\frac{1}{2\pi R}\oint_{C^*}u(x,y)ds u(x0,y0)=2πR1Cu(x,y)ds
证明 用Green第三公式,取 C = C ∗ C=C^* C=C,即
u ( x 0 , y 0 ) = 1 2 π ∮ C ∗ ( u ∂ ln ⁡ r ∂ n ⃗ − ln ⁡ r ∂ u ∂ n ⃗ ) d s u(x_0,y_0)=\frac{1}{2\pi}\oint_{C^*}\left(u\frac{\partial\ln r}{\partial\vec{n}}-\ln r\frac{\partial u}{\partial\vec{n}}\right)ds u(x0,y0)=2π1C(un lnrlnrn u)ds
C ∗ C^* C上满足
∂ ln ⁡ r ∂ n ⃗ ∣ r = R = ∂ ln ⁡ r ∂ r ∣ r = R = 1 r ∣ r = R = ! R \left.\frac{\partial\ln r}{\partial\vec{n}}\right|_{r=R}=\left.\frac{\partial\ln r}{\partial r}\right|_{r=R}=\left.\frac{1}{r}\right|_{r=R}=\frac{!}{R} n lnrr=R=rlnrr=R=r1r=R=R!

∮ C ∗ ∂ u ∂ n ⃗ d s = 0 \oint_{C^*}\frac{\partial u}{\partial\vec{n}}ds=0 Cn uds=0
该结论在之前证明Green第三公式时也使用过,则可得到
u ( x 0 , y 0 ) = 1 2 π ∮ C ∗ ( u R − ln ⁡ R ∂ u ∂ n ⃗ ) d s = 1 2 π R ∮ C ∗ u ( x , y ) d s u(x_0,y_0)=\frac{1}{2\pi}\oint_{C^*}\left(\frac{u}{R}-\ln R\frac{\partial u}{\partial\vec{n}}\right)ds=\frac{1}{2\pi R}\oint_{C^*}u(x,y)ds u(x0,y0)=2π1C(RulnRn u)ds=2πR1Cu(x,y)ds

极大值原理

连通的有界闭区域上的非常数调和函数 u ( x , y ) u(x,y) u(x,y)在此区域内部的点不能达到其最大值或最小值.

证明 设该有界闭区域为 S ‾ \overline{S} S,由开区域 S S S和边界 C = ∂ S C=\partial S C=S构成.用反证法证明,假设在 S S S上能取到 u ( x , y ) u(x,y) u(x,y)的最大值或最小值,不妨设某一个最大值点为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),设圆域 S R = { ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ R 2 } S_R=\{(x,y)|(x-x_0)^2+(y-y_0)^2\le R^2\} SR={(x,y)(xx0)2+(yy0)2R2},圆周 C R = { ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 = R 2 } C_R=\{(x,y)|(x-x_0)^2+(y-y_0)^2=R^2\} CR={(x,y)(xx0)2+(yy0)2=R2}.

  1. S R ⊂ S S_R\subset S SRS,对 ∀ r ∈ ( 0 , R ] \forall r\in(0,R ] r(0,R],由调和函数的中值定理有
    u ( x 0 , y 0 ) = 1 2 π r ∮ C r u ( x , y ) d s u(x_0,y_0)=\frac{1}{2\pi r}\oint_{C_r}u(x,y)ds u(x0,y0)=2πr1Cru(x,y)ds

    1 2 π r ∮ C r [ u ( x 0 , y 0 ) − u ( x , y ) ] d s = 0 \frac{1}{2\pi r}\oint_{C_r}[u(x_0,y_0)-u(x,y)]ds=0 2πr1Cr[u(x0,y0)u(x,y)]ds=0
    u ( x 0 , y 0 ) u(x_0,y_0) u(x0,y0)为最大值,则有 u ( x 0 , y 0 ) − u ( x , y ) ≥ 0 u(x_0,y_0)-u(x,y)\ge0 u(x0,y0)u(x,y)0,因而在 C r C_r Cr上满足
    u ( x 0 , y 0 ) − u ( x , y ) ≡ 0 u(x_0,y_0)-u(x,y)\equiv0 u(x0,y0)u(x,y)0
    根据 r r r的任意性,可知对于任何 ( x , y ) ∈ S R (x,y)\in S_R (x,y)SR都有 u ( x 0 , y 0 ) − u ( x , y ) ≡ 0 u(x_0,y_0)-u(x,y)\equiv0 u(x0,y0)u(x,y)0成立,则 u ( x , y ) u(x,y) u(x,y) S R S_R SR上是一个常数.

  2. 由于该有界区域是连通的,则不同于(x_0,y_0)的任意内点 ( x , y ) ∈ S (x,y)\in S (x,y)S,存在一条完全含于 S S S的曲线将 ( x , y ) (x,y) (x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)连接起来,并且可以用有限个完全含于 S S S的圆 S 1 ∗ , S 2 ∗ , ⋯ &ThinSpace; . S k ∗ S^*_1,S^*_2,\cdots.S^*_k S1,S2,.Sk完全覆盖这条曲线,并且满足
    ( x , y ) ∈ S 1 ∗ , ( x 0 , y 0 ) ∈ S k ∗ , S 1 ∗ ∩ S 2 ∗ ≠ ∅ , S 2 ∗ ∩ S 3 ∗ ≠ ∅ , ⋯ &ThinSpace; , S k − 1 ∗ ∩ S k ∗ ≠ ∅ (x,y)\in S^*_1,(x_0,y_0)\in S^*_k,S^*_1\cap S^*_2\neq\emptyset,S^*_2\cap S^*_3\neq\emptyset,\cdots,S^*_{k-1}\cap S^*_k\neq\emptyset (x,y)S1,(x0,y0)Sk,S1S2̸=,S2S3̸=,,Sk1Sk̸=
    根据1知 S k ∗ S^*_k Sk u u u为常数,则 S k − 1 ∗ , ⋯ &ThinSpace; , S 2 ∗ , S 1 ∗ S^*_{k-1},\cdots,S^*_2,S^*_1 Sk1,,S2,S1 u u u均为常数,特别地, u ( x , y ) u(x,y) u(x,y)也为常数.根据 ( x , y ) (x,y) (x,y)的任意性,则 u ( x , y ) u(x,y) u(x,y) S S S上是一个常数.

  3. 根据 u ( x , y ) u(x,y) u(x,y) S ‾ \overline{S} S上的连续性,通过 S S S的点趋向 C = ∂ S C=\partial S C=S上的点取极限,则 u ( x , y ) u(x,y) u(x,y) S ‾ \overline{S} S上为常数.

综上所述, u u u为常数,这与条件"非常数调和函数"矛盾,因而假设有误.假设最小值点同理可证,则 u ( x , y ) u(x,y) u(x,y)的最值点不能在区域内部取得.

1.2 复连通区域上的Green公式

对于复连通区域,边界的正向按照沿边界正向增加时研究区域始终在左手侧来定义,曲线的外法线方向始终由研究区域内部出发指向研究区域的外侧.例如,对于满足
S = { ( x , y ) ∣ a 2 ≤ x 2 + y 2 ≤ b 2 } , C 1 = { ( x , y ) ∣ x 2 + y 2 = a 2 } , C 2 = { ( x , y ) ∣ x 2 + y 2 = b 2 } , a &lt; b , ∂ S = C 1 ∪ C 2 S=\{(x,y)|a^2\le x^2+y^2\le b^2\},C_1=\{(x,y)|x^2+y^2=a^2\},C_2=\{(x,y)|x^2+y^2=b^2\},a&lt;b,\partial S=C_1\cup C_2 S={(x,y)a2x2+y2b2},C1={(x,y)x2+y2=a2},C2={(x,y)x2+y2=b2},a<b,S=C1C2
的区域 S S S,边界 C 1 C_1 C1上的外法线单位向量为 n ⃗ = ( − x a , − y a ) \vec{n}=(-\frac{x}{a},-\frac {y}{a}) n =(ax,ay),而边界 C 2 C_2 C2上的外法线单位向量为 n ⃗ = ( x b , y b ) \vec{n}=(\frac{x}{b},\frac {y}{b}) n =(bx,by).圆环内侧由圆环指向原点,圆环外侧背离原点方向.因而通过外法线单位向量来表述Green公式,可以得到叙述形式不变的结论:

S S S是由分段光滑的封闭曲线 C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck围成的闭区域,满足(1)向量场 F = ( P ( x , y ) , Q ( x , y ) ) F=(P(x,y),Q(x,y)) F=(P(x,y),Q(x,y)) S S S上连续;(2) P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y) S S S上有连续的一阶偏导数,设 n ⃗ \vec{n} n C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck的外法线单位向量,用"+"表示取正向,则
∬ S ( ∂ P ∂ x + ∂ Q ∂ y ) d x d y = ∫ C 1 + C 2 + ⋯ + C k [ P cos ⁡ ( n ⃗ , x ) + Q cos ⁡ ( n ⃗ , y ) ] d s \iint_S\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right)dxdy=\int_{C_1+C_2+\cdots+C_k}[P\cos(\vec{n},x)+Q\cos(\vec{n},y)]ds S(xP+yQ)dxdy=C1+C2++Ck[Pcos(n ,x)+Qcos(n ,y)]ds
其余公式的证明没有较大的区别,就不给出了.

Green第一公式

C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck为封闭光滑曲线, S S S C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck围成的区域, u u u有连续的二阶偏导数, ω \omega ω有连续的偏导数, n ⃗ \vec{n} n C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck的外法线单位向量,取 C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck的正向,则
∬ S ω ∂ u ∂ x d x d y + ∬ S u ∂ ω ∂ x d x d y = ∫ C 1 + C 2 + ⋯ + C k u w d y ∬ S ω Δ u d x d y + ∬ S ( ∂ u ∂ x ∂ ω ∂ x + ∂ u ∂ y ∂ ω ∂ y ) d x d y = ∫ C 1 + C 2 + ⋯ + C k ω ∂ u ∂ n ⃗ d s \iint_S\omega\frac{\partial u}{\partial x}dxdy+\iint_Su\frac{\partial\omega}{\partial x}dxdy=\int_{C_1+C_2+\cdots+C_k}uwdy\\\iint_S\omega\Delta udxdy+\iint_S\left(\frac{\partial u}{\partial x}\frac{\partial\omega}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial\omega}{\partial y}\right)dxdy=\int_{C_1+C_2+\cdots+C_k}\omega\frac{\partial u}{\partial\vec{n}}ds Sωxudxdy+Suxωdxdy=C1+C2++CkuwdySωΔudxdy+S(xuxω+yuyω)dxdy=C1+C2++Ckωn uds
特别地,当 ω = u \omega=u ω=u时,有
∬ S [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 ] d x d y + ∬ S u Δ u d x d y = ∮ C 1 + C 2 + ⋯ + C k u ∂ u ∂ n ⃗ d s \iint_S\left[\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2\right]dxdy+\iint_Su\Delta udxdy=\oint_{C_1+C_2+\cdots+C_k}u\frac{\partial u}{\partial\vec{n}}ds S[(xu)2+(yu)2]dxdy+SuΔudxdy=C1+C2++Ckun uds

Green第二公式

C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck为封闭光滑曲线, S S S C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck围成的区域, u , v u, v u,v有连续的二阶偏导数, n ⃗ \vec{n} n C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck的外法线单位向量,取 C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck的正向,则
∬ S ∣ Δ u Δ v u v ∣ d x d y = ∮ C 1 + C 2 + ⋯ + C k ∣ ∂ u ∂ n ⃗ ∂ v ∂ n ⃗ u v ∣ d s \iint_S\begin{vmatrix}\Delta u&amp;\Delta v\\u&amp;v\end{vmatrix}dxdy=\oint_{C_1+C_2+\cdots+C_k}\begin{vmatrix}\frac{\partial u}{\partial\vec{n}}&amp;\frac{\partial v}{\partial\vec{n}}\\u&amp;v\end{vmatrix}ds SΔuuΔvvdxdy=C1+C2++Ckn uun vvds

Green第三公式

u u u为有界闭区域 S S S内的调和函数, C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck S S S的边界, ∂ u ∂ n ⃗ \frac{\partial u}{\partial\vec{n}} n u u u u沿着 C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck的单位外法线的方向导数, r ⃗ = ( a − x , b − y ) \vec{r}=(a-x,b-y) r =(ax,by), r = ( a − x ) 2 + ( b − y ) 2 r=\sqrt{(a-x)^2+(b-y)^2} r=(ax)2+(by)2 ( x , y ) (x,y) (x,y) C 1 , C 2 , ⋯ &ThinSpace; , C k C_1,C_2,\cdots,C_k C1,C2,,Ck上动点 ( a , b ) (a,b) (a,b)之间的距离,则
u ( x , y ) = 1 2 π ∮ C 1 + C 2 + ⋯ + C k ( u cos ⁡ ( r ⃗ , n ⃗ ) r − ln ⁡ r ∂ u ∂ n ⃗ ) d s = 1 2 π ∮ C 1 + C 2 + ⋯ + C k ( u ∂ ln ⁡ r ∂ n ⃗ − ln ⁡ r ∂ u ∂ n ⃗ ) d s u(x,y)=\frac{1}{2\pi}\oint_{C_1+C_2+\cdots+C_k}\left(u\frac{\cos(\vec{r},\vec{n})}{r}-\ln r\frac{\partial u}{\partial\vec{n}}\right)ds=\frac{1}{2\pi}\oint_{C_1+C_2+\cdots+C_k}\left(u\frac{\partial\ln r}{\partial\vec{n}}-\ln r\frac{\partial u}{\partial\vec{n}}\right)ds u(x,y)=2π1C1+C2++Ck(urcos(r ,n )lnrn u)ds=2π1C1+C2++Ck(un lnrlnrn u)ds
注意
∮ C 1 + C 2 + ⋯ + C k − C 0 ∣ ∂ ln ⁡ r ∂ n ⃗ ∂ u ∂ n ⃗ ln ⁡ r u ∣ d s = ∬ S − S 0 ∣ Δ ln ⁡ r Δ u ln ⁡ r u ∣ d a d b = 0 \oint_{{C_1+C_2+\cdots+C_k}-C_0}\begin{vmatrix}\frac{\partial\ln r}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\ln r&amp;u\end{vmatrix}ds=\iint_{S-S_0}\begin{vmatrix}\Delta\ln r&amp;\Delta u\\\ln r&amp;u\end{vmatrix}dadb=0 C1+C2++CkC0n lnrlnrn uuds=SS0ΔlnrlnrΔuudadb=0

∮ C 1 + C 2 + ⋯ + C k ∣ ∂ ln ⁡ r ∂ n ⃗ ∂ u ∂ n ⃗ ln ⁡ r u ∣ d s = ∮ C 0 ∣ ∂ ln ⁡ r ∂ n ⃗ ∂ u ∂ n ⃗ ln ⁡ r u ∣ d s \oint_{C_1+C_2+\cdots+C_k}\begin{vmatrix}\frac{\partial\ln r}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\ln r&amp;u\end{vmatrix}ds=\oint_{C_0}\begin{vmatrix}\frac{\partial\ln r}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\ln r&amp;u\end{vmatrix}ds C1+C2++Ckn lnrlnrn uuds=C0n lnrlnrn uuds

中值定理和极大值原理同样满足,这里不再重复.

2 三维空间上的Gauss公式

2.1 单连通区域上的Gauss公式

V V V是由分片光滑的双侧封闭曲面 S S S围成的闭区域,满足(1)向量场 F = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) F=(P(x,y,z),Q(x,y,z),R(x,y,z)) F=(P(x,y,z),Q(x,y,z),R(x,y,z)) V V V上连续;(2) P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x,y,z),Q(x,y,z),R(x,y,z) P(x,y,z),Q(x,y,z),R(x,y,z) V V V上有连续的一阶偏导数,则成立
∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z = ∬ S P d y d z + Q d z d x + R d x d y \iiint_V\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dxdydz=\iint_SPdydz+Qdzdx+Rdxdy V(xP+yQ+zR)dxdydz=SPdydz+Qdzdx+Rdxdy
S S S的外侧.

n ⃗ \vec{n} n S S S的外法线单位向量,则
∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z = ∬ S [ P cos ⁡ ( n ⃗ , x ) + Q cos ⁡ ( n ⃗ , y ) + R cos ⁡ ( n ⃗ , z ) ] d S \iiint_V\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dxdydz=\iint_S[P\cos(\vec{n},x)+Q\cos(\vec{n},y)+R\cos(\vec{n},z)]dS V(xP+yQ+zR)dxdydz=S[Pcos(n ,x)+Qcos(n ,y)+Rcos(n ,z)]dS

空间Green第一公式

S S S为封闭光滑曲面, V V V S S S围成的区域, u u u S S S V V V上有二阶连续的偏导数, ω \omega ω有连续的偏导数, n ⃗ \vec{n} n S S S的外法线单位向量,取 S S S的外侧,则
∭ V ω ∂ u ∂ x d x d y d z + ∭ V u ∂ ω ∂ x d x d y d z = ∬ S u w d y d z ∭ V ω Δ u d x d y d z + ∭ V ( ∂ u ∂ x ∂ ω ∂ x + ∂ u ∂ y ∂ ω ∂ y + ∂ u ∂ z ∂ ω ∂ z ) d x d y d z = ∬ S ω ∂ u ∂ n ⃗ d S \iiint_V\omega\frac{\partial u}{\partial x}dxdydz+\iiint_Vu\frac{\partial\omega}{\partial x}dxdydz=\iint_Suwdydz\\\iiint_V\omega\Delta udxdydz+\iiint_V\left(\frac{\partial u}{\partial x}\frac{\partial\omega}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial\omega}{\partial y}+\frac{\partial u}{\partial z}\frac{\partial\omega}{\partial z}\right)dxdydz=\iint_S\omega\frac{\partial u}{\partial\vec{n}}dS Vωxudxdydz+Vuxωdxdydz=SuwdydzVωΔudxdydz+V(xuxω+yuyω+zuzω)dxdydz=Sωn udS
特别地,当 ω = u \omega=u ω=u时,有
∭ V [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 + ( ∂ u ∂ z ) 2 ] d x d y d z + ∭ V u Δ u d x d y d z = ∬ S u ∂ u ∂ n ⃗ d S \iiint_V\left[\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2+\left(\frac{\partial u}{\partial z}\right)^2\right]dxdydz+\iiint_Vu\Delta udxdydz=\iint_Su\frac{\partial u}{\partial\vec{n}}dS V[(xu)2+(yu)2+(zu)2]dxdydz+VuΔudxdydz=Sun udS

证明 证明方法同上,即有
ω ∂ u ∂ n ⃗ = ω ∂ u ∂ x cos ⁡ ( n ⃗ , x ) + ω ∂ u ∂ y cos ⁡ ( n ⃗ , y ) + ω ∂ u ∂ y cos ⁡ ( n ⃗ , z ) \omega\frac{\partial u}{\partial\vec{n}}=\omega\frac{\partial u}{\partial x}\cos(\vec{n},x)+\omega\frac{\partial u}{\partial y}\cos(\vec{n},y)+\omega\frac{\partial u}{\partial y}\cos(\vec{n},z) ωn u=ωxucos(n ,x)+ωyucos(n ,y)+ωyucos(n ,z)
即可证得结论.

空间Green第二公式

S S S为封闭光滑曲面, V V V S S S围成的区域, u , v u,v u,v S S S V V V上有二阶连续的偏导数, n ⃗ \vec{n} n S S S的外法线单位向量,取 S S S的外侧,则
∭ V ∣ Δ u Δ v u v ∣ d x d y d z = ∬ S ∣ ∂ u ∂ n ⃗ ∂ v ∂ n ⃗ u v ∣ d S \iiint_V\begin{vmatrix}\Delta u&amp;\Delta v\\u&amp;v\end{vmatrix}dxdydz=\iint_S\begin{vmatrix}\frac{\partial u}{\partial\vec{n}}&amp;\frac{\partial v}{\partial\vec{n}}\\u&amp;v\end{vmatrix}dS VΔuuΔvvdxdydz=Sn uun vvdS

证明 在空间格林第一公式里面写出关于 u , v u,v u,v的等式并交换位置,有
∭ V v Δ u d x d y d z + ∭ V ( ∂ u ∂ x ∂ v ∂ x + ∂ u ∂ y ∂ v ∂ y + ∂ u ∂ z ∂ v ∂ z ) d x d y d z = ∬ S v ∂ u ∂ n ⃗ d s ∭ V u Δ v d x d y d z + ∭ V ( ∂ v ∂ x ∂ u ∂ x + ∂ v ∂ y ∂ u ∂ y + ∂ v ∂ z ∂ u ∂ z ) d x d y d z = ∬ S u ∂ v ∂ n ⃗ d s \iiint_Vv\Delta udxdydz+\iiint_V\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}\frac{\partial v}{\partial z}\right)dxdydz=\iint_Sv\frac{\partial u}{\partial\vec{n}}ds\\\iiint_Vu\Delta vdxdydz+\iiint_V\left(\frac{\partial v}{\partial x}\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\frac{\partial u}{\partial y}+\frac{\partial v}{\partial z}\frac{\partial u}{\partial z}\right)dxdydz=\iint_Su\frac{\partial v}{\partial\vec{n}}ds VvΔudxdydz+V(xuxv+yuyv+zuzv)dxdydz=Svn udsVuΔvdxdydz+V(xvxu+yvyu+zvzu)dxdydz=Sun vds
二式相减即得结论.

空间Green第三公式

u u u为有界闭区域 V V V内的调和函数, S S S V V V的边界, ∂ u ∂ n ⃗ \frac{\partial u}{\partial\vec{n}} n u u u u沿着 S S S的单位外法线的方向导数, r ⃗ = ( a − x , b − y , c − z ) \vec{r}=(a-x,b-y,c-z) r =(ax,by,cz), r = ( a − x ) 2 + ( b − y ) 2 + ( c − z ) 2 r=\sqrt{(a-x)^2+(b-y)^2+(c-z)^2} r=(ax)2+(by)2+(cz)2 ( x , y , z ) (x,y,z) (x,y,z) S S S上动点 ( a , b , c ) (a,b,c) (a,b,c)之间的距离,则
u ( x , y , z ) = 1 4 π ∬ S ( u cos ⁡ ( r ⃗ , n ⃗ ) r 2 + 1 r ∂ u ∂ n ⃗ ) d S = 1 4 π ∬ S ( u ∂ − 1 r ∂ n ⃗ − − 1 r ∂ u ∂ n ⃗ ) d S u(x,y,z)=\frac{1}{4\pi}\iint_S\left(u\frac{\cos(\vec{r},\vec{n})}{r^2}+\frac{1}{r}\frac{\partial u}{\partial\vec{n}}\right)dS=\frac{1}{4\pi}\iint_S\left(u\frac{\partial\frac{-1}{r}}{\partial\vec{n}}-\frac{-1}{r}\frac{\partial u}{\partial\vec{n}}\right)dS u(x,y,z)=4π1S(ur2cos(r ,n )+r1n u)dS=4π1S(un r1r1n u)dS

证明 在结论等式中有一点需要额外说明
cos ⁡ ( r ⃗ , n ⃗ ) r 2 = 1 r 2 a − x r cos ⁡ ( n ⃗ , x ) + 1 r 2 y − b r cos ⁡ ( n ⃗ , y ) + 1 r 2 z − c r cos ⁡ ( n ⃗ , y ) = ∂ − 1 r ∂ n ⃗ \frac{\cos(\vec{r},\vec{n})}{r^2}=\frac{1}{r^2}\frac{a-x}{r}\cos(\vec{n},x)+\frac{1}{r^2}\frac{y-b}{r}\cos(\vec{n},y)+\frac{1}{r^2}\frac{z-c}{r}\cos(\vec{n},y)=\frac{\partial\frac{-1}{r}}{\partial\vec{n}} r2cos(r ,n )=r21raxcos(n ,x)+r21rybcos(n ,y)+r21rzccos(n ,y)=n r1

∂ 2 − 1 r ∂ a 2 + ∂ 2 − 1 r ∂ b 2 + ∂ 2 − 1 r ∂ c 2 = r 3 − 3 r ( a − x ) 2 r 6 + r 3 − 3 r ( b − y ) 2 r 6 + r 3 − 3 r ( c − z ) 2 r 6 = 3 r 3 − 3 r 3 r 6 = 0 , r ≠ 0 \frac{\partial^2\frac{-1}{r}}{\partial a^2}+\frac{\partial^2\frac{-1}{r}}{\partial b^2}+\frac{\partial^2\frac{-1}{r}}{\partial c^2}=\frac{r^3-3r(a-x)^2}{r^6}+\frac{r^3-3r(b-y)^2}{r^6}+\frac{r^3-3r(c-z)^2}{r^6}=\frac{3r^3-3r^3}{r^6}=0,r\neq0 a22r1+b22r1+c22r1=r6r33r(ax)2+r6r33r(by)2+r6r33r(cz)2=r63r33r3=0,r̸=0

− 1 r , r ≠ 0 \frac{-1}{r},r\neq 0 r1,r̸=0为调和函数.设 V 0 = { ( a , b , c ) ∣ ( a − x ) 2 + ( b − y ) 2 + ( c − z ) 2 ≤ ρ 2 } ⊂ V V_0=\{(a,b,c)|(a-x)^2+(b-y)^2+(c-z)^2\le \rho^2\}\subset V V0={(a,b,c)(ax)2+(by)2+(cz)2ρ2}V, S 0 S_0 S0 V 0 V_0 V0的边界,则
∬ S − S 0 ∣ ∂ − 1 r ∂ n ⃗ ∂ u ∂ n ⃗ − 1 r u ∣ d S = ∭ V − V 0 ∣ Δ − 1 r Δ u − 1 r u ∣ d a d b d c = 0 \iint_{S-S_0}\begin{vmatrix}\frac{\partial\frac{-1}{r}}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\frac{-1}{r}&amp;u\end{vmatrix}dS=\iiint_{V-V_0}\begin{vmatrix}\Delta\frac{-1}{r}&amp;\Delta u\\\frac{-1}{r}&amp;u\end{vmatrix}dadbdc=0 SS0n r1r1n uudS=VV0Δr1r1Δuudadbdc=0

∬ S ∣ ∂ − 1 r ∂ n ⃗ ∂ u ∂ n ⃗ − 1 r u ∣ d S = ∬ S 0 ∣ ∂ − 1 r ∂ n ⃗ ∂ u ∂ n ⃗ − 1 r u ∣ d S = 1 ρ 2 ∬ S 0 u d S − − 1 ρ ∬ S 0 ∂ u ∂ n ⃗ d S = 4 π u ( x + θ 1 ρ , y + θ 2 ρ , z + θ 3 ρ ) , 0 &lt; θ 1 &lt; 1 , 0 &lt; θ 2 &lt; 1 , 0 &lt; θ 3 &lt; 1 \begin{aligned}\iint_S\begin{vmatrix}\frac{\partial\frac{-1}{r}}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\frac{-1}{r}&amp;u\end{vmatrix}dS&amp;=\iint_{S_0}\begin{vmatrix}\frac{\partial\frac{-1}{r}}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\frac{-1}{r}&amp;u\end{vmatrix}dS\\&amp;=\frac{1}{\rho ^2}\iint_{S_0}udS-\frac{-1}{\rho}\iint_{S_0}\frac{\partial u}{\partial\vec{n}}dS\\&amp;=4\pi u(x+\theta_1\rho,y+\theta_2\rho,z+\theta_3\rho),0&lt;\theta_1&lt;1,0&lt;\theta_2&lt;1,0&lt;\theta_3&lt;1\end{aligned} Sn r1r1n uudS=S0n r1r1n uudS=ρ21S0udSρ1S0n udS=4πu(x+θ1ρ,y+θ2ρ,z+θ3ρ),0<θ1<1,0<θ2<1,0<θ3<1

对上式取极限 ρ → 0 + \rho\to0^+ ρ0+,则证毕.

调和函数的中值定理

Δ u = 0 , S ∗ = { ( x , y , z ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 } \Delta u=0,S^*=\{(x,y,z)|(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2\} Δu=0,S={(x,y,z)(xx0)2+(yy0)2+(zz0)2=R2}, V ∗ = { ( x , y , z ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ≤ R 2 } V^*=\{(x,y,z)|(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\le R^2\} V={(x,y,z)(xx0)2+(yy0)2+(zz0)2R2},则
u ( x 0 , y 0 , z 0 ) = 1 4 π R 2 ∬ S ∗ u ( x , y , z ) d S u(x_0,y_0,z_0)=\frac{1}{4\pi R^2}\iint_{S^*}u(x,y,z)dS u(x0,y0,z0)=4πR21Su(x,y,z)dS
证明 用空间Green第三公式,取 S = S ∗ S=S^* S=S,即
u ( x 0 , y 0 , z 0 ) = 1 4 π ∬ S ∗ ( u ∂ − 1 r ∂ n ⃗ − − 1 r ∂ u ∂ n ⃗ ) d S u(x_0,y_0,z_0)=\frac{1}{4\pi}\iint_{S^*}\left(u\frac{\partial\frac{-1}{r}}{\partial\vec{n}}-\frac{-1}{r}\frac{\partial u}{\partial\vec{n}}\right)dS u(x0,y0,z0)=4π1S(un r1r1n u)dS
C ∗ C^* C上满足
∂ − 1 r ∂ n ⃗ ∣ r = R = ∂ − 1 r ∂ r ∣ r = R = 1 r 2 ∣ r = R = 1 R 2 \left.\frac{\partial\frac{-1}{r}}{\partial\vec{n}}\right|_{r=R}=\left.\frac{\partial\frac{-1}{r}}{\partial r}\right|_{r=R}=\left.\frac{1}{r^2}\right|_{r=R}=\frac{1}{R^2} n r1r=R=rr1r=R=r21r=R=R21

∬ S ∗ ∂ u ∂ n ⃗ d S = 0 \iint_{S^*}\frac{\partial u}{\partial\vec{n}}dS=0 Sn udS=0
该结论在之前证明空间Green第三公式时也使用过,则可得到
u ( x 0 , y 0 , z 0 ) = 1 4 π ∬ S ∗ ( u R 2 − − 1 R ∂ u ∂ n ⃗ ) d S = 1 4 π R 2 ∬ S ∗ u ( x , y , z ) d S u(x_0,y_0,z_0)=\frac{1}{4\pi}\iint_{S^*}\left(\frac{u}{R^2}-\frac{-1}{R}\frac{\partial u}{\partial\vec{n}}\right)dS=\frac{1}{4\pi R^2}\iint_{S^*}u(x,y,z)dS u(x0,y0,z0)=4π1S(R2uR1n u)dS=4πR21Su(x,y,z)dS

极大值原理

连通的有界闭区域上的非常数调和函数 u ( x , y , z ) u(x,y,z) u(x,y,z)在此区域内部的点不能达到其最大值或最小值.

证明 设该有界闭区域为 V ‾ \overline{V} V,由开区域 V V V和边界 S = ∂ V S=\partial V S=V构成.用反证法证明,假设在 V V V上能取到 u ( x , y , z ) u(x,y,z) u(x,y,z)的最大值或最小值,不妨设某一个最大值点为 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),设球 V R = { ( x , y , z ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ≤ R 2 } V_R=\{(x,y,z)|(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\le R^2\} VR={(x,y,z)(xx0)2+(yy0)2+(zz0)2R2},球面 S R = { ( x , y , z ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 } S_R=\{(x,y,z)|(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2\} SR={(x,y,z)(xx0)2+(yy0)2+(zz0)2=R2}.

  1. V R ⊂ V V_R\subset V VRV,对 ∀ r ∈ ( 0 , R ] \forall r\in(0,R ] r(0,R],由调和函数的中值定理有
    u ( x 0 , y 0 , z 0 ) = 1 4 π r 2 ∬ S r u ( x , y , z ) d S u(x_0,y_0,z_0)=\frac{1}{4\pi r^2}\iint_{S_r}u(x,y,z)dS u(x0,y0,z0)=4πr21Sru(x,y,z)dS

    1 4 π r 2 ∬ S r [ u ( x 0 , y 0 , z 0 ) − u ( x , y , z ) ] d S = 0 \frac{1}{4\pi r^2}\iint_{S_r}[u(x_0,y_0,z_0)-u(x,y,z)]dS=0 4πr21Sr[u(x0,y0,z0)u(x,y,z)]dS=0
    u ( x 0 , y 0 , z 0 ) u(x_0,y_0,z_0) u(x0,y0,z0)为最大值,则有 u ( x 0 , y 0 , z 0 ) − u ( x , y , z ) ≥ 0 u(x_0,y_0,z_0)-u(x,y,z)\ge0 u(x0,y0,z0)u(x,y,z)0,因而在 C r C_r Cr上满足
    u ( x 0 , y 0 , z 0 ) − u ( x , y , z ) ≡ 0 u(x_0,y_0,z_0)-u(x,y,z)\equiv0 u(x0,y0,z0)u(x,y,z)0
    根据 r r r的任意性,可知对于任何 ( x , y , z ) ∈ V R (x,y,z)\in V_R (x,y,z)VR都有 u ( x 0 , y 0 , z 0 ) − u ( x , y , z ) ≡ 0 u(x_0,y_0,z_0)-u(x,y,z)\equiv0 u(x0,y0,z0)u(x,y,z)0成立,则 u ( x , y , z ) u(x,y,z) u(x,y,z) V R V_R VR上是一个常数.

  2. 由于该有界区域是连通的,则不同于 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)的任意内点 ( x , y , z ) ∈ V (x,y,z)\in V (x,y,z)V,存在一条完全含于 V V V的曲线将 ( x , y , z ) (x,y,z) (x,y,z) ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)连接起来,并且可以用有限个完全含于 V V V的球 V 1 ∗ , V 2 ∗ , ⋯ &ThinSpace; . V k ∗ V^*_1,V^*_2,\cdots.V^*_k V1,V2,.Vk完全覆盖这条曲线,并且满足
    ( x , y , z ) ∈ V 1 ∗ , ( x 0 , y 0 , z 0 ) ∈ V k ∗ , V 1 ∗ ∩ V 2 ∗ ≠ ∅ , V 2 ∗ ∩ V 3 ∗ ≠ ∅ , ⋯ &ThinSpace; , V k − 1 ∗ ∩ V k ∗ ≠ ∅ (x,y,z)\in V^*_1,(x_0,y_0,z_0)\in V^*_k,V^*_1\cap V^*_2\neq\emptyset,V^*_2\cap V^*_3\neq\emptyset,\cdots,V^*_{k-1}\cap V^*_k\neq\emptyset (x,y,z)V1,(x0,y0,z0)Vk,V1V2̸=,V2V3̸=,,Vk1Vk̸=
    根据1知 V k ∗ V^*_k Vk u u u为常数,则 V k − 1 ∗ , ⋯ &ThinSpace; , V 2 ∗ , V 1 ∗ V^*_{k-1},\cdots,V^*_2,V^*_1 Vk1,,V2,V1 u u u均为常数,特别地, u ( x , y , z ) u(x,y,z) u(x,y,z)也为常数.根据 ( x , y , z ) (x,y,z) (x,y,z)的任意性,则 u ( x , y , z ) u(x,y,z) u(x,y,z) V V V上是一个常数.

  3. 根据 u ( x , y , z ) u(x,y,z) u(x,y,z) V ‾ \overline{V} V上的连续性,通过 V V V的点趋向 S = ∂ V S=\partial V S=V上的点取极限,则 u ( x , y , z ) u(x,y,z) u(x,y,z) V ‾ \overline{V} V上为常数.

综上所述, u u u为常数,这与条件"非常数调和函数"矛盾,因而假设有误.假设最小值点同理可证,则 u ( x , y , z ) u(x,y,z) u(x,y,z)的最值点不能在区域内部取得.

2.2 复连通区域上的Gauss公式

对于复连通区域,曲线的外法线方向始终由研究区域内部出发指向研究区域的外部,外法线方向定义为外侧.例如,对于满足
V = { ( x , y , z ) ∣ a 2 ≤ x 2 + y 2 + z 2 ≤ b 2 } S 1 = { ( x , y , z ) ∣ x 2 + y 2 + z 2 = a 2 } , S 2 = { ( x , y , z ) ∣ x 2 + y 2 + z 2 = b 2 } , a &lt; b , ∂ V = S 1 ∪ S 2 V=\{(x,y,z)|a^2\le x^2+y^2+z^2\le b^2\}\\S_1=\{(x,y,z)|x^2+y^2+z^2=a^2\},S_2=\{(x,y,z)|x^2+y^2+z^2=b^2\},a&lt;b,\partial V=S_1\cup S_2 V={(x,y,z)a2x2+y2+z2b2}S1={(x,y,z)x2+y2+z2=a2},S2={(x,y,z)x2+y2+z2=b2},a<b,V=S1S2
的区域 V V V,边界 S 1 S_1 S1上的外法线单位向量为 n ⃗ = ( − x a , − y a , − z a ) \vec{n}=(-\frac{x}{a},-\frac {y}{a},-\frac{z}{a}) n =(ax,ay,az),而边界 S 2 S_2 S2上的外法线单位向量为 n ⃗ = ( x b , y b , z b ) \vec{n}=(\frac{x}{b},\frac {y}{b},\frac{z}{b}) n =(bx,by,bz),在区域的内表面上指向原点,区域的外表面上背离原点方向.因而类似地有:

V V V是由分片光滑的双侧封闭曲面 S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk围成的闭区域,满足(1)向量场 F = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) F=(P(x,y,z),Q(x,y,z),R(x,y,z)) F=(P(x,y,z),Q(x,y,z),R(x,y,z)) V V V上连续;(2) P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x,y,z),Q(x,y,z),R(x,y,z) P(x,y,z),Q(x,y,z),R(x,y,z) V V V上有连续的一阶偏导数,设 n ⃗ \vec{n} n S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk的外法线单位向量,用"+"表示取曲面的外侧,则
∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z = ∬ S 1 + S 2 + ⋯ + S k [ P cos ⁡ ( n ⃗ , x ) + Q cos ⁡ ( n ⃗ , y ) + R cos ⁡ ( n ⃗ , z ) ] d S \iiint_V\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dxdydz=\iint_{S_1+S_2+\cdots+S_k}[P\cos(\vec{n},x)+Q\cos(\vec{n},y)+R\cos(\vec{n},z)]dS V(xP+yQ+zR)dxdydz=S1+S2++Sk[Pcos(n ,x)+Qcos(n ,y)+Rcos(n ,z)]dS
证明同样省略.

空间Green第一公式

S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk为封闭光滑曲面, V V V S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk围成的区域, u u u S S S V V V上有二阶连续的偏导数, ω \omega ω有连续的偏导数, n ⃗ \vec{n} n S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk的外法线单位向量,则
∭ V ω ∂ u ∂ x d x d y d z + ∭ V u ∂ ω ∂ x d x d y d z = ∬ S 1 + S 2 + ⋯ + S k u w d y d z ∭ V ω Δ u d x d y d z + ∭ V ( ∂ u ∂ x ∂ ω ∂ x + ∂ u ∂ y ∂ ω ∂ y + ∂ u ∂ z ∂ ω ∂ z ) d x d y d z = ∬ S 1 + S 2 + ⋯ + S k ω ∂ u ∂ n ⃗ d S \iiint_V\omega\frac{\partial u}{\partial x}dxdydz+\iiint_Vu\frac{\partial\omega}{\partial x}dxdydz=\iint_{S_1+S_2+\cdots+S_k}uwdydz\\\iiint_V\omega\Delta udxdydz+\iiint_V\left(\frac{\partial u}{\partial x}\frac{\partial\omega}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial\omega}{\partial y}+\frac{\partial u}{\partial z}\frac{\partial\omega}{\partial z}\right)dxdydz=\iint_{S_1+S_2+\cdots+S_k}\omega\frac{\partial u}{\partial\vec{n}}dS Vωxudxdydz+Vuxωdxdydz=S1+S2++SkuwdydzVωΔudxdydz+V(xuxω+yuyω+zuzω)dxdydz=S1+S2++Skωn udS
特别地,当 ω = u \omega=u ω=u时,有
∭ V [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 + ( ∂ u ∂ z ) 2 ] d x d y d z + ∭ V u Δ u d x d y d z = ∬ S 1 + S 2 + ⋯ + S k u ∂ u ∂ n ⃗ d S \iiint_V\left[\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2+\left(\frac{\partial u}{\partial z}\right)^2\right]dxdydz+\iiint_Vu\Delta udxdydz=\iint_{S_1+S_2+\cdots+S_k}u\frac{\partial u}{\partial\vec{n}}dS V[(xu)2+(yu)2+(zu)2]dxdydz+VuΔudxdydz=S1+S2++Skun udS
空间Green第二公式

空间Green第二公式

S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk为封闭光滑曲面, V V V S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk围成的区域, u , v u,v u,v S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk V V V上有二阶连续的偏导数, n ⃗ \vec{n} n S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk的外法线单位向量,则
∭ V ∣ Δ u Δ v u v ∣ d x d y d z = ∬ S 1 + S 2 + ⋯ + S k ∣ ∂ u ∂ n ⃗ ∂ v ∂ n ⃗ u v ∣ d S \iiint_V\begin{vmatrix}\Delta u&amp;\Delta v\\u&amp;v\end{vmatrix}dxdydz=\iint_{S_1+S_2+\cdots+S_k}\begin{vmatrix}\frac{\partial u}{\partial\vec{n}}&amp;\frac{\partial v}{\partial\vec{n}}\\u&amp;v\end{vmatrix}dS VΔuuΔvvdxdydz=S1+S2++Skn uun vvdS

空间Green第三公式

u u u为有界闭区域 V V V内的调和函数, S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk V V V的边界, ∂ u ∂ n ⃗ \frac{\partial u}{\partial\vec{n}} n u u u u沿着 S 1 , S 2 , ⋯ &ThinSpace; , S k S_1,S_2,\cdots,S_k S1,S2,,Sk的单位外法线的方向导数, r ⃗ = ( a − x , b − y , c − z ) \vec{r}=(a-x,b-y,c-z) r =(ax,by,cz), r = ( a − x ) 2 + ( b − y ) 2 + ( c − z ) 2 r=\sqrt{(a-x)^2+(b-y)^2+(c-z)^2} r=(ax)2+(by)2+(cz)2 ( x , y , z ) (x,y,z) (x,y,z) S S S上动点 ( a , b , c ) (a,b,c) (a,b,c)之间的距离,则
u ( x , y , z ) = 1 4 π ∬ S 1 + S 2 + ⋯ + S k ( u cos ⁡ ( r ⃗ , n ⃗ ) r 2 + 1 r ∂ u ∂ n ⃗ ) d S = 1 4 π ∬ S 1 + S 2 + ⋯ + S k ( u ∂ − 1 r ∂ n ⃗ − − 1 r ∂ u ∂ n ⃗ ) d S u(x,y,z)=\frac{1}{4\pi}\iint_{S_1+S_2+\cdots+S_k}\left(u\frac{\cos(\vec{r},\vec{n})}{r^2}+\frac{1}{r}\frac{\partial u}{\partial\vec{n}}\right)dS=\frac{1}{4\pi}\iint_{S_1+S_2+\cdots+S_k}\left(u\frac{\partial\frac{-1}{r}}{\partial\vec{n}}-\frac{-1}{r}\frac{\partial u}{\partial\vec{n}}\right)dS u(x,y,z)=4π1S1+S2++Sk(ur2cos(r ,n )+r1n u)dS=4π1S1+S2++Sk(un r1r1n u)dS
注意
∬ S 1 + S 2 + ⋯ + S k − S 0 ∣ ∂ − 1 r ∂ n ⃗ ∂ u ∂ n ⃗ − 1 r u ∣ d S = ∭ V − V 0 ∣ Δ − 1 r Δ u − 1 r u ∣ d a d b d c = 0 \iint_{{S_1+S_2+\cdots+S_k}-S_0}\begin{vmatrix}\frac{\partial\frac{-1}{r}}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\frac{-1}{r}&amp;u\end{vmatrix}dS=\iiint_{V-V_0}\begin{vmatrix}\Delta\frac{-1}{r}&amp;\Delta u\\\frac{-1}{r}&amp;u\end{vmatrix}dadbdc=0 S1+S2++SkS0n r1r1n uudS=VV0Δr1r1Δuudadbdc=0

∬ S 1 + S 2 + ⋯ + S k ∣ ∂ − 1 r ∂ n ⃗ ∂ u ∂ n ⃗ − 1 r u ∣ d S = ∬ S 0 ∣ ∂ − 1 r ∂ n ⃗ ∂ u ∂ n ⃗ − 1 r u ∣ d S \iint_{S_1+S_2+\cdots+S_k}\begin{vmatrix}\frac{\partial\frac{-1}{r}}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\frac{-1}{r}&amp;u\end{vmatrix}dS=\iint_{S_0}\begin{vmatrix}\frac{\partial\frac{-1}{r}}{\partial\vec{n}}&amp;\frac{\partial u}{\partial\vec{n}}\\\frac{-1}{r}&amp;u\end{vmatrix}dS S1+S2++Skn r1r1n uudS=S0n r1r1n uudS

中值定理和极大值原理同样满足.

3 黎曼公式证明

∬ S ∣ L ( u ) M ( v ) u v ∣ d x d y = ∫ C P d x + Q d y L ( u ) = ∂ 2 u ∂ x ∂ y + a ∂ u ∂ x + b ∂ u ∂ y + c u M ( v ) = ∂ 2 v ∂ x ∂ y − a ∂ v ∂ x − b ∂ v ∂ y + c v \iint_S\begin{vmatrix}L(u)&amp;M(v)\\u&amp;v\end{vmatrix}dxdy=\int_CPdx+Qdy\\L(u)=\frac{\partial^2u}{\partial x\partial y}+a\frac{\partial u}{\partial x}+b\frac{\partial u}{\partial y}+cu\\M(v)=\frac{\partial^2v}{\partial x\partial y}-a\frac{\partial v}{\partial x}-b\frac{\partial v}{\partial y}+cv SL(u)uM(v)vdxdy=CPdx+QdyL(u)=xy2u+axu+byu+cuM(v)=xy2vaxvbyv+cv

其中 a , b , c a,b,c a,b,c为常数, C C C围成的区域为 S S S, u , v u,v u,v S S S上连续并且有连续的二阶偏导数. P , Q P,Q P,Q为确定的函数.

证明 这个问题的证明需要用到格林公式.对于左边等式先凑形式.
∬ S ∣ L ( u ) M ( v ) u v ∣ d x d y = ∬ S [ v L ( u ) − u M ( v ) ] d x d y = ∬ S ( v ∂ 2 u ∂ x ∂ y + a v ∂ u ∂ x + b v ∂ u ∂ y + c u v − u ∂ 2 v ∂ x ∂ y + a u ∂ v ∂ x + b u ∂ v ∂ y − c u v ) d x d y = ∬ S [ ( v ∂ 2 u ∂ x ∂ y + ∂ v ∂ x ∂ u ∂ y ) + a ( v ∂ u ∂ x + u ∂ v ∂ x ) + b ( v ∂ u ∂ y + u ∂ v ∂ y ) − ( u ∂ 2 v ∂ x ∂ y + ∂ u ∂ y ∂ v ∂ x ) ] d x d y = ∬ S [ ∂ ∂ x ( v ∂ u ∂ y ) + a ∂ v u ∂ x + b ∂ v u ∂ y − ∂ ∂ y ( u ∂ v ∂ x ) ] d x d y = ∫ C ( u ∂ v ∂ x − b u v ) d x + ( v ∂ u ∂ y + a u v ) d x \begin{aligned}&amp;\iint_S\begin{vmatrix}L(u)&amp;M(v)\\u&amp;v\end{vmatrix}dxdy\\=&amp;\iint_S\left[vL(u)-uM(v)\right]dxdy\\=&amp;\iint_S\left(v\frac{\partial^2u}{\partial x\partial y}+av\frac{\partial u}{\partial x}+bv\frac{\partial u}{\partial y}+cuv-u\frac{\partial^2v}{\partial x\partial y}+au\frac{\partial v}{\partial x}+bu\frac{\partial v}{\partial y}-cuv\right)dxdy\\=&amp;\iint_S\left[\left(v\frac{\partial^2u}{\partial x\partial y}+\frac{\partial v}{\partial x}\frac{\partial u}{\partial y}\right)+a\left(v\frac{\partial u}{\partial x}+u\frac{\partial v}{\partial x}\right)+b\left(v\frac{\partial u}{\partial y}+u\frac{\partial v}{\partial y}\right)-\left(u\frac{\partial^2v}{\partial x\partial y}+\frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\right)\right]dxdy\\=&amp;\iint_S\left[\frac{\partial}{\partial x}\left(v\frac{\partial u}{\partial y}\right)+a\frac{\partial vu}{\partial x}+b\frac{\partial vu}{\partial y}-\frac{\partial}{\partial y}\left(u\frac{\partial v}{\partial x}\right)\right]dxdy\\=&amp;\int_C\left(u\frac{\partial v}{\partial x}-buv\right)dx+\left(v\frac{\partial u}{\partial y}+auv\right)dx\end{aligned} =====SL(u)uM(v)vdxdyS[vL(u)uM(v)]dxdyS(vxy2u+avxu+bvyu+cuvuxy2v+auxv+buyvcuv)dxdyS[(vxy2u+xvyu)+a(vxu+uxv)+b(vyu+uyv)(uxy2v+yuxv)]dxdyS[x(vyu)+axvu+byvuy(uxv)]dxdyC(uxvbuv)dx+(vyu+auv)dx
则令
P = u ∂ v ∂ x − b u v Q = v ∂ u ∂ y + a u v P=u\frac{\partial v}{\partial x}-buv\\Q=v\frac{\partial u}{\partial y}+auv P=uxvbuvQ=vyu+auv
即证毕.

4 外微分形式和三大公式的统一形式

4.1 外积和外微分形式

以二重积分为例,如果认为面积元有向,在应用换元公式的时候不对雅可比行列式取绝对值,会得到这样一个结果
d x d y = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ d u d v dxdy=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partial x}{\partial u}&amp;\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&amp;\frac{\partial y}{\partial v}\end{vmatrix} dudv dxdy=(u,v)(x,y)=uxuyvxvydudv
如果交换 d x dx dx d y dy dy,则有
d y d x = ∂ ( y , x ) ∂ ( u , v ) = − ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ d u d v dydx=\frac{\partial(y,x)}{\partial(u,v)}=-\begin{vmatrix}\frac{\partial x}{\partial u}&amp;\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&amp;\frac{\partial y}{\partial v}\end{vmatrix} dudv dydx=(u,v)(y,x)=uxuyvxvydudv
默认以上等式成立的条件都满足,那么就有
d x d y = − d y d x dxdy=-dydx dxdy=dydx
在当时学习二重积分时,我们强制取了雅可比行列式的绝对值,得到了一个看起来很对称的结果.那么如果不取绝对值,可以考虑以下内容.

如果认为在 d x dx dx d y dy dy之间存在一种运算,使得其满足反对称性,即 d x d y = − d y d x dxdy=-dydx dxdy=dydx,立刻可以得到 d x d x = 0 dxdx=0 dxdx=0.可以想到这种运算应该是和向量外积类似的运算,那么

在微分 d x , d y , d z , ⋯ dx,dy,dz,\cdots dx,dy,dz,之间定义一种外积运算,用记号来表示: 满足以下规定的微分乘积叫做外乘积
d x ∧ d y = − d y ∧ d x ⇒ d x ∧ d x = 0 dx\land dy=-dy\land dx\Rightarrow dx\land dx=0 dxdy=dydxdxdx=0
更严格的数学定义描述如下

  1. ( a d x ) ∧ d y = a ( d x ∧ d y ) , a ∈ R (adx)\land dy=a(dx\land dy),a\in R (adx)dy=a(dxdy),aR
  2. 外乘积运算对加法的分配律: d x ∧ ( d y + d z ) = d x ∧ d y + d x ∧ d z dx\land(dy+dz)=dx\land dy+dx\land dz dx(dy+dz)=dxdy+dxdz
  3. 反交换律: d x ∧ d y = − d y ∧ d x dx\land dy=-dy\land dx dxdy=dydx
  4. 结合律: d x ∧ ( d y ∧ d z ) = ( d x ∧ d y ) ∧ d z dx\land(dy\land dz)=(dx\land dy)\land dz dx(dydz)=(dxdy)dz

这些运算定律和向量的外积运算是对应的.并且认为普通的两个不相同微分之间的乘积交换顺序是不变的,即 d x d y = d y d x dxdy=dydx dxdy=dydx.

由微分的外乘积和函数组成的线性组合称为外微分形式,具体地说,设 P , Q , R , A , B , C , H P,Q,R,A,B,C,H P,Q,R,A,B,C,H都为 x , y , z x,y,z x,y,z的函数,则

  1. P d x + Q d y + R d z Pdx+Qdy+Rdz Pdx+Qdy+Rdz称为一次外微分形式(一次没有乘积,与普通的微分形式是一样的);
  2. A d y ∧ d z + B d z ∧ d x + C d x ∧ d y Ady\land dz+Bdz\land dx+Cdx\land dy Adydz+Bdzdx+Cdxdy称为二次外微分形式;
  3. H d x ∧ d y ∧ d z Hdx\land dy\land dz Hdxdydz称为三次外微分形式;
  4. 特别地,函数 f f f成为零次外微分形式, P , Q , R , A , B , C , H P,Q,R,A,B,C,H P,Q,R,A,B,C,H称为微分形式的系数.

对于两个外微分形式 λ , μ \lambda,\mu λ,μ,也可以定义外积 λ ∧ μ \lambda\land\mu λμ,只需要将对应的各项外微分进行外积就可以了.如果设 P , Q , R , A , B , C , E , F , G , H P,Q,R,A,B,C,E,F,G,H P,Q,R,A,B,C,E,F,G,H都为 x , y , z x,y,z x,y,z的函数,那么
λ = A d x + B d y + C d z μ = E d x + F d y + G d z ν = P d x ∧ d y + Q d z ∧ d x + R d x ∧ d y λ ∧ μ = ( A d x + B d y + C d z ) ∧ ( E d x + F d y + G d z ) = ( B G − C F ) d x ∧ d y + ( C E − A G ) d z ∧ d x + ( A F − B E ) d x ∧ d y λ ∧ ν = ( A d x + B d y + C d z ) ∧ ( P d x ∧ d y + Q d z ∧ d x + R d x ∧ d y ) = ( A P + B Q + C R ) d x ∧ d y ∧ d z \begin{aligned}\lambda=&amp;Adx+Bdy+Cdz\\\mu=&amp;Edx+Fdy+Gdz\\\nu=&amp;Pdx\land dy+Qdz\land dx+Rdx\land dy\\\lambda\land\mu=&amp;(Adx+Bdy+Cdz)\land(Edx+Fdy+Gdz)\\=&amp;(BG-CF)dx\land dy+(CE-AG)dz\land dx+(AF-BE)dx\land dy\\\lambda\land\nu=&amp;(Adx+Bdy+Cdz)\land(Pdx\land dy+Qdz\land dx+Rdx\land dy)\\=&amp;(AP+BQ+CR)dx\land dy\land dz\end{aligned} λ=μ=ν=λμ==λν==Adx+Bdy+CdzEdx+Fdy+GdzPdxdy+Qdzdx+Rdxdy(Adx+Bdy+Cdz)(Edx+Fdy+Gdz)(BGCF)dxdy+(CEAG)dzdx+(AFBE)dxdy(Adx+Bdy+Cdz)(Pdxdy+Qdzdx+Rdxdy)(AP+BQ+CR)dxdydz
进一步,可以给出如下运算律,设 λ , μ , ν \lambda,\mu,\nu λ,μ,ν是三个任意的外微分形式,则有

  1. 对加法的分配律: ( λ + μ ) ∧ ν = λ ∧ ν + μ ∧ ν , λ ∧ ( μ + ν ) = λ ∧ μ + λ ∧ ν (\lambda+\mu)\land\nu=\lambda\land\nu+\mu\land\nu,\lambda\land(\mu+\nu)=\lambda\land\mu+\lambda\land\nu (λ+μ)ν=λν+μν,λ(μ+ν)=λμ+λν
  2. 结合律: λ ∧ ( μ ∧ ν ) = ( λ ∧ μ ) ∧ ν \lambda\land(\mu\land\nu)=(\lambda\land\mu)\land\nu λ(μν)=(λμ)ν
  3. 外微分形式的外积不满足交换律.但若 λ \lambda λ p p p次外微分形式, μ \mu μ q q q次外微分形式,则 λ ∧ μ = ( − 1 ) p q μ ∧ λ \lambda\land\mu=(-1)^{pq}\mu\land\lambda λμ=(1)pqμλ

4.2 外微分运算与Poincaré引理

对外微分形式 ω \omega ω引进外微分运算,用 d d d表示,称 d d d为外微分算子.在全文中出现的 d d d格式都有些问题,为了方便起见,就不修改了.定义运算如下

  1. 对零次外微分形式 ω = f \omega=f ω=f ,就是通常的全微分运算,
    d ω = d f = ∂ f ∂ x d x + ∂ f ∂ y d y + ∂ f ∂ z d z d\omega=df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz dω=df=xfdx+yfdy+zfdz

  2. 对一次外微分形式 ω = P d x + Q d y + R d z \omega=Pdx+Qdy+Rdz ω=Pdx+Qdy+Rdz,
    d ω = d P ∧ d x + d Q ∧ d y + d R ∧ d z d ω = ( ∂ R ∂ y − ∂ Q ∂ z ) d y ∧ d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z ∧ d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x ∧ d y d\omega=dP\land dx+dQ\land dy+dR\land dz\\d\omega=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)dy\land dz+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)dz\land dx+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy dω=dPdx+dQdy+dRdzdω=(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy

  3. 对二次外微分形式 ω = A d y ∧ d z + B d z ∧ d x + C d x ∧ d y \omega=Ady\land dz+Bdz\land dx+Cdx\land dy ω=Adydz+Bdzdx+Cdxdy,
    d ω = d A ∧ d y ∧ d z + d B ∧ d z ∧ d x + d C ∧ d x ∧ d y d ω = ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x ∧ d y ∧ d z d\omega=dA\land dy\land dz+dB\land dz\land dx+dC\land dx\land dy\\d\omega=\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dx\land dy\land dz dω=dAdydz+dBdzdx+dCdxdydω=(xP+yQ+zR)dxdydz

  4. 对三次外微分形式 H d x ∧ d y ∧ d z Hdx\land dy\land dz Hdxdydz,
    d ω = d H ∧ d x ∧ d y ∧ d z = 0 d\omega=dH\land dx\land dy\land dz=0 dω=dHdxdydz=0

在这些规定下,外微分算子 d d d与普通微分算子 d d d就是一样的了,即对每一项进行运算,在每一项中分别对每一个因子运算,保持其余因子不动,将得出的各项相加.区别在于普通的微分将各项得出后进行普通的乘法,而外微分需要进行外积.

Poincaré引理叙述如下:

ω \omega ω为一外微分形式,其微分形式的系数具有二阶连续的偏微商,则 d 2 ω = d ( d ω ) = 0 d^2\omega=d(d\omega)=0 d2ω=d(dω)=0.

证明 仅在三维空间里讨论,而三维空间的外微分形式只有四种,不妨逐个验证.
d d ω = d d f = d ( ∂ f ∂ x ) ∧ d x + d ( ∂ f ∂ y ) ∧ d y + d ( ∂ f ∂ z ) ∧ d z = ( ∂ 2 f ∂ y ∂ z − ∂ 2 f ∂ z ∂ y ) d y ∧ d z + ( ∂ 2 f ∂ z ∂ x − ∂ 2 f ∂ x ∂ z ) d z ∧ d x + ( ∂ 2 f ∂ x ∂ y − ∂ 2 f ∂ y ∂ x ) d x ∧ d y = 0 \begin{aligned}dd\omega=ddf=&amp;d\left(\frac{\partial f}{\partial x}\right)\land dx+d\left(\frac{\partial f}{\partial y}\right)\land dy+d\left(\frac{\partial f}{\partial z}\right)\land dz\\=&amp;\left(\frac{\partial^2f}{\partial y\partial z}-\frac{\partial^2f}{\partial z\partial y}\right)dy\land dz+\left(\frac{\partial^2f}{\partial z\partial x}-\frac{\partial^2f}{\partial x\partial z}\right)dz\land dx+\left(\frac{\partial^2f}{\partial x\partial y}-\frac{\partial^2f}{\partial y\partial x}\right)dx\land dy\\=&amp;0\end{aligned} ddω=ddf===d(xf)dx+d(yf)dy+d(zf)dz(yz2fzy2f)dydz+(zx2fxz2f)dzdx+(xy2fyx2f)dxdy0

d d ω = d [ ( ∂ R ∂ y − ∂ Q ∂ z ) d y ∧ d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z ∧ d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x ∧ d y ] = ( ∂ 2 R ∂ y ∂ x − ∂ 2 Q ∂ z ∂ x + ∂ 2 P ∂ z ∂ y − ∂ 2 R ∂ x ∂ y + ∂ 2 Q ∂ x ∂ z − ∂ 2 P ∂ y ∂ z ) d x ∧ d y ∧ d z = 0 \begin{aligned}dd\omega=&amp;d\left[\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)dy\land dz+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)dz\land dx+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy\right]\\=&amp;\left(\frac{\partial^2R}{\partial y\partial x}-\frac{\partial^2Q}{\partial z\partial x}+\frac{\partial^2P}{\partial z\partial y}-\frac{\partial^2R}{\partial x\partial y}+\frac{\partial^2Q}{\partial x\partial z}-\frac{\partial^2P}{\partial y\partial z}\right)dx\land dy\land dz\\=&amp;0\end{aligned} ddω===d[(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy](yx2Rzx2Q+zy2Pxy2R+xz2Qyz2P)dxdydz0

d d ω = d ( d A ∧ d y ∧ d z + d B ∧ d z ∧ d x + d C ∧ d x ∧ d y ) = 0 dd\omega=d(dA\land dy\land dz+dB\land dz\land dx+dC\land dx\land dy)=0 ddω=d(dAdydz+dBdzdx+dCdxdy)=0

d d ω = d d ( H d x ∧ d y ∧ d z ) = d ( 0 ) = 0 dd\omega=dd(Hdx\land dy\land dz)=d(0)=0 ddω=dd(Hdxdydz)=d(0)=0

当然Poincaré引理还有逆定理:若 ω \omega ω是一个 p , p = 1 , 2 , 3 p,p=1,2,3 p,p=1,2,3次外微分形式,且 d ω = 0 d\omega=0 dω=0,则一定存在一个 p − 1 p-1 p1次外微分形式 α \alpha α,使得
ω = d α \omega=d\alpha ω=dα
证明 还是仅在三维空间内讨论.

p = 1 p=1 p=1,则有 ω = P d x + Q d y + R d z \omega=Pdx+Qdy+Rdz ω=Pdx+Qdy+Rdz,并且
d ω = ( ∂ R ∂ y − ∂ Q ∂ z ) d y ∧ d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z ∧ d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x ∧ d y = 0 ⇒ ∂ R ∂ y = ∂ Q ∂ z , ∂ P ∂ z = ∂ R ∂ x , ∂ Q ∂ x = ∂ P ∂ y d\omega=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)dy\land dz+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)dz\land dx+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy=0\\\Rightarrow\frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} dω=(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy=0yR=zQ,zP=xR,xQ=yP
f ( x , y , z ) = ∫ 0 x P ( t , y , z ) d t f(x,y,z)=\int_0^xP(t,y,z)dt f(x,y,z)=0xP(t,y,z)dt,则
d f = P ( x , y , z ) d x + ∫ 0 x ∂ P ( t , y , z ) ∂ y d t d y + ∫ 0 x ∂ P ( t , y , z ) ∂ z d t d z = P ( x , y , z ) d x + ∫ 0 x ∂ Q ( t , y , z ) ∂ t d t d y + ∫ 0 x ∂ R ( t , y , z ) ∂ t d t d z = P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z − Q ( 0 , y , z ) d y − R ( 0 , y , z ) d z \begin{aligned}df=&amp;P(x,y,z)dx+\int_0^x\frac{\partial P(t,y,z)}{\partial y}dtdy+\int_0^x\frac{\partial P(t,y,z)}{\partial z}dtdz\\=&amp;P(x,y,z)dx+\int_0^x\frac{\partial Q(t,y,z)}{\partial t}dtdy+\int_0^x\frac{\partial R(t,y,z)}{\partial t}dtdz\\=&amp;P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz-Q(0,y,z)dy-R(0,y,z)dz\end{aligned} df===P(x,y,z)dx+0xyP(t,y,z)dtdy+0xzP(t,y,z)dtdzP(x,y,z)dx+0xtQ(t,y,z)dtdy+0xtR(t,y,z)dtdzP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dzQ(0,y,z)dyR(0,y,z)dz
因而可得到,令
α = ∫ 0 x P ( t , y , z ) d t + ∫ 0 y Q ( 0 , t , z ) d t + ∫ 0 z R ( 0 , y , t ) d t \alpha=\int_0^xP(t,y,z)dt+\int_0^yQ(0,t,z)dt+\int_0^zR(0,y,t)dt α=0xP(t,y,z)dt+0yQ(0,t,z)dt+0zR(0,y,t)dt
即可.

p = 2 p=2 p=2,则有 ω = A d y ∧ d z + B d z ∧ d x + C d x ∧ d y \omega=Ady\land dz+Bdz\land dx+Cdx\land dy ω=Adydz+Bdzdx+Cdxdy,并且,
d ω = ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x ∧ d y ∧ d z = 0 ⇒ ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 d\omega=\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dx\land dy\land dz=0\Rightarrow\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=0 dω=(xP+yQ+zR)dxdydz=0xP+yQ+zR=0

d ( ∫ 0 y A ( x , t , z ) d t d z ) = A ( x , y , z ) d y ∧ d z + ∫ 0 y ∂ A ( x , t , z ) ∂ x d t d x ∧ d z d ( ∫ 0 y − C ( x , t , z ) d t d x ) = − C ( x , y , z ) d y ∧ d x − ∫ 0 y ∂ C ( x , t , z ) ∂ z d t d z ∧ d x d\left(\int_0^yA(x,t,z)dtdz\right)=A(x,y,z)dy\land dz+\int_0^y\frac{\partial A(x,t,z)}{\partial x}dtdx\land dz\\d\left(\int_0^y-C(x,t,z)dtdx\right)=-C(x,y,z)dy\land dx-\int_0^y\frac{\partial C(x,t,z)}{\partial z}dtdz\land dx d(0yA(x,t,z)dtdz)=A(x,y,z)dydz+0yxA(x,t,z)dtdxdzd(0yC(x,t,z)dtdx)=C(x,y,z)dydx0yzC(x,t,z)dtdzdx

d ( ∫ 0 y A ( x , t , z ) d t d z − ∫ 0 y C ( x , t , z ) d t d x ) = A ( x , y , z ) d y ∧ d z + C ( x , y , z ) d x ∧ d y − ∫ 0 y ( ∂ A ( x , t , z ) ∂ x + ∂ C ( x , t , z ) ∂ z ) d t d z ∧ d x = A ( x , y , z ) d y ∧ d z + C ( x , y , z ) d x ∧ d y + ∫ 0 y ∂ B ( x , t , z ) ∂ t d t d z ∧ d x = A ( x , y , z ) d y ∧ d z + B ( x , y , z ) d z ∧ d x + C ( x , y , z ) d x ∧ d y − B ( x , 0 , z ) d z ∧ d x \begin{aligned}&amp;d\left(\int_0^yA(x,t,z)dtdz-\int_0^yC(x,t,z)dtdx\right)\\=&amp;A(x,y,z)dy\land dz+C(x,y,z)dx\land dy-\int_0^y\left(\frac{\partial A(x,t,z)}{\partial x}+\frac{\partial C(x,t,z)}{\partial z} \right)dtdz\land dx\\=&amp;A(x,y,z)dy\land dz+C(x,y,z)dx\land dy+\int_0^y\frac{\partial B(x,t,z)}{\partial t}dtdz\land dx\\=&amp;A(x,y,z)dy\land dz+B(x,y,z)dz\land dx+C(x,y,z)dx\land dy-B(x,0,z)dz\land dx\end{aligned} ===d(0yA(x,t,z)dtdz0yC(x,t,z)dtdx)A(x,y,z)dydz+C(x,y,z)dxdy0y(xA(x,t,z)+zC(x,t,z))dtdzdxA(x,y,z)dydz+C(x,y,z)dxdy+0ytB(x,t,z)dtdzdxA(x,y,z)dydz+B(x,y,z)dzdx+C(x,y,z)dxdyB(x,0,z)dzdx


α = ∫ 0 y A ( x , t , z ) d t d z − ∫ 0 y C ( x , t , z ) d t d x + ∫ 0 z R ( x , 0 , t ) d t d x \alpha=\int_0^yA(x,t,z)dtdz-\int_0^yC(x,t,z)dtdx+\int_0^zR(x,0,t)dtdx α=0yA(x,t,z)dtdz0yC(x,t,z)dtdx+0zR(x,0,t)dtdx
p = 3 p=3 p=3,则有 ω = H d x ∧ d y ∧ d z \omega=Hdx\land dy\land dz ω=Hdxdydz,令
α = ∫ 0 x H ( t , y , z ) d t d y ∧ d z \alpha=\int_0^xH(t,y,z)dtdy\land dz α=0xH(t,y,z)dtdydz
即可.

当然以上定理需要满足一定的条件,当 p = 1 p=1 p=1要求定义域是曲面单连通的,当 p = 2 p=2 p=2要求定义域是空间单连通的,这是为了保证上述所有积分是有意义的.

4.3 梯度、旋度和散度的数学意义

对于零次外微分形式 ω = f \omega=f ω=f,梯度和零次外微分形式的外微分相当,即
g r a d   f = ∂ f ∂ x i + ∂ f ∂ y j + ∂ f ∂ z k , d ω = d f = ∂ f ∂ x d x + ∂ f ∂ y d y + ∂ f ∂ z d z grad\ f=\frac{\partial f}{\partial x}i+\frac{\partial f}{\partial y}j+\frac{\partial f}{\partial z}k,d\omega=df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz grad f=xfi+yfj+zfk,dω=df=xfdx+yfdy+zfdz
对一次外微分形式 ω = P d x + Q d y + R d z \omega=Pdx+Qdy+Rdz ω=Pdx+Qdy+Rdz,旋度和一次外微分形式的外微分相当,即
r o t   v = ( ∂ R ∂ y − ∂ Q ∂ z ) i + ( ∂ P ∂ z − ∂ R ∂ x ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k d ω = ( ∂ R ∂ y − ∂ Q ∂ z ) d y ∧ d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z ∧ d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x ∧ d y rot\ v=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)i+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)j+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)k\\d\omega=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)dy\land dz+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)dz\land dx+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy rot v=(yRzQ)i+(zPxR)j+(xQyP)kdω=(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy
对二次外微分形式 ω = A d y ∧ d z + B d z ∧ d x + C d x ∧ d y \omega=Ady\land dz+Bdz\land dx+Cdx\land dy ω=Adydz+Bdzdx+Cdxdy,散度和二次外微分形式的外微分相当,即
d i v   v = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z , d ω = ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x ∧ d y ∧ d z div\ v=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z},d\omega=\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dx\land dy\land dz div v=xP+yQ+zR,dω=(xP+yQ+zR)dxdydz
由这个角度可以看出,三维空间不会再出现其他的"度".

那么来考虑 d d ω = 0 dd\omega=0 ddω=0,若 ω = f , d d ω = 0 \omega=f,dd\omega=0 ω=f,ddω=0相当于 f f f梯度场必为无旋场,即
r o t   g r a d   f = 0 rot\ grad\ f=0 rot grad f=0
ω = P d x + Q d y + R d z , d d ω = 0 \omega=Pdx+Qdy+Rdz,dd\omega=0 ω=Pdx+Qdy+Rdz,ddω=0相当于 v v v的旋度场必为无源场,即
d i v   r o t   v = 0 div\ rot\ v=0 div rot v=0
考虑Poincaré引理,若 ω \omega ω为一次外微分形式,相当于无旋场为有势场,存在一个势函数;若 ω \omega ω为二次外微分形式,相当于无源场有向量势,存在一个向量势.

4.4 多变量微积分的基本定理(一般的Stokes公式)

Green公式,Gauss公式,Stokes公式可以写成一个统一的形式
∫ ∂ Ω ω = ∫ Ω d ω \int_{\partial \Omega}\omega=\int_\Omega d\omega Ωω=Ωdω
这里的 ω \omega ω为外微分形式, d ω d\omega dω为外微分运算, Ω \Omega Ω d ω d\omega dω的积分区域, ∂ Ω \partial\Omega Ω表示 Ω \Omega Ω的边界, ∫ \int 表示重积分,其维数和区域的维数相等.这个公式可以推广到更高维的空间中去.更详细的理论可以参见Wikipedia.

附录:

这次大作业的前半部分主要讨论了平面和空间上Green公式的和调和函数的相关定理性质.在整个的证明体系中,Green和Gauss公式在课堂上已经证明过,而Green第一公式、Green第二公式、Green第三公式、调和函数的中值定理和极大值原理是给出证明的,并且在证明过程中使用了前一条定理的结论,使得整个证明形成一套体系,可以更好地认识和理解Green和Gauss公式.从中可以看到,平面和空间两种情况下的定理证明有极为相似的内在思想和外在形式.如果用外法线单位向量的形式来表述整个定理体系,可以认为,平面情况和空间情况基本上"没有什么不同".在单连通区域和复连通区域,如果也用外法线单位向量的形式来表述整个定理,得到的结果也极为相似.那么,如何定义这个"外法线单位向量"就成了很关键的问题.定义好外法线单位向量的含义,可以简明而系统地表述这些定理.此外,Green第三公式在平面和空间两种情况下有着相似的形式,相同的积分和行列式形式,不同的系数和关于 r r r的函数,这其中是否有必然的联系?这是一个可以继续研究和尝试推广到 n n n维空间下的问题.

如果再加上Stokes公式,这三个公式类别具有着相似的特性,这就启发我们思考这几个公式是否可以统一?也就是说,这几个公式具有一定的内在联系.事实上,在本章的最后的确给出了一个统一的表述.那么高维空间是否也有相似的结论呢?这也是一个可以继续推广的问题.

参考文献

  1. 杨小远,孙玉泉,杨卓琴,薛玉梅编著.工科数学分析分析教程(下册)[M].北京:科学出版社,2012.

  2. 费定晖,周学圣编演.吉米多维奇数学分析习题集题解6[M].济南:山东科学技术出版社,2012.

  3. 龚昇.简明微积分[M].北京:高等教育出版社,2006.

  4. 中国科学技术大学数学科学学院编著.微积分学导论(下册)[M].合肥:中国科学技术大学出版社,2016.

  5. 李雪平.关于外微分形式[J].韶关师专学报,1981,(02):14-20.

  6. wikipedia.Master theorem[EB/OL].2017-06-15.

    https://en.wikipedia.org/wiki/Exterior_derivative

  7. wikipedia.Green theorem[EB/OL].2017-06-15.

    https://en.wikipedia.org/wiki/Green's_theorem

  8. wikipedia.Stokes theorem[EB/OL].2017-06-15.

    https://en.wikipedia.org/wiki/Stokes'_theorem

  • 11
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值