💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于BiTCN-LSTM的负荷预测研究文档
一、引言
负荷预测是电力系统运行和管理中的重要环节,准确的负荷预测对于提高电力系统的经济性、安全性和可靠性具有重要意义。随着智能电网和大数据技术的发展,基于机器学习的负荷预测方法逐渐成为研究热点。本文提出一种基于双向时间卷积网络(BiTCN)与长短期记忆网络(LSTM)的负荷预测模型,旨在结合两者的优势,提高负荷预测的精度和效率。
二、模型概述
BiTCN-LSTM模型结合了双向时间卷积网络(BiTCN)在提取时间序列特征方面的优势与长短期记忆网络(LSTM)在处理时序数据长期依赖关系方面的能力。该模型能够同时从前向和后向两个方向提取负荷数据中的特征,并有效处理数据中的长期依赖关系,从而提升负荷预测的准确性。
三、模型结构
1. 双向时间卷积网络(BiTCN)
- 功能:BiTCN通过双向卷积操作,从时间序列数据的前向和后向两个方向提取特征,有效捕捉数据中的局部依赖关系。
- 优势:相比单向卷积网络,BiTCN能够更全面地提取时序数据中的特征信息,提高模型的预测能力。
2. 长短期记忆网络(LSTM)
- 功能:LSTM是RNN的一种变体,通过引入记忆单元和门控机制(包括输入门、遗忘门和输出门),解决了传统RNN在处理长序列数据时存在的梯度消失或梯度爆炸问题。LSTM能够捕捉数据中的长期依赖关系,适用于负荷预测等时序数据分析任务。
- 优势:LSTM在处理时序数据时具有更高的稳定性和准确性,能够学习并记忆历史数据中的模式,以支持对未来的预测。
四、模型构建与训练
1. 数据预处理
- 对原始负荷数据进行清洗,去除异常值和缺失值。
- 对影响负荷变化的因素(如天气、节假日、经济指标等)进行提取和处理。
- 对数据进行归一化处理,以提高模型的训练效率和预测精度。
2. 模型初始化
- 初始化BiTCN和LSTM的网络参数。
3. 模型训练
- 将预处理后的数据输入到BiTCN中,从前后两个方向提取时间序列特征。
- 将BiTCN的输出作为LSTM的输入,LSTM进一步处理并捕捉数据中的长期依赖关系。
- 使用优化算法(如Adam算法)对模型进行训练,更新网络参数以最小化预测误差。
五、实验结果与分析
实验结果表明,基于BiTCN-LSTM的负荷预测模型在多个评估指标上均表现出优异的性能。该模型能够充分利用时间序列数据中的局部和全局特征信息,提高负荷预测的精度和稳定性。此外,通过调整BiTCN和LSTM的网络结构和参数设置,可以进一步优化模型的预测性能。
六、应用前景与展望
基于BiTCN-LSTM的负荷预测模型具有广泛的应用前景,可用于电力系统的短期负荷预测、中长期负荷预测以及负荷调度与优化等领域。未来研究可以进一步探索更复杂的网络结构(如多层BiTCN、注意力机制等)和集成学习模型(如与其他机器学习模型的融合),以提高负荷预测的精度和泛化能力。同时,结合实时数据和多源数据融合技术,可以实现更加准确和及时的负荷预测服务。
七、结论
本文提出了一种基于BiTCN-LSTM的负荷预测模型,该模型结合了双向时间卷积网络和长短期记忆网络的优势,能够有效提取时间序列数据中的特征信息并处理长期依赖关系。实验结果表明,该模型在负荷预测方面具有较高的准确性和稳定性,为电力系统负荷预测提供了新的思路和方法。
📚2 运行结果
部分代码:
# 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%']) return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table # 返回包含所有评估指标的字典。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.
[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.
[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.
[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取