电动汽车负荷预测+最优最优充放电最佳调度(Matlab代码)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

电动汽车负荷预测与最优充放电调度研究综述

一、电动汽车负荷预测方法

二、最优充放电调度策略

三、负荷预测与调度的协同优化案例

四、挑战与未来方向

五、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

电动汽车负荷预测与最优充放电调度研究综述

一、电动汽车负荷预测方法
  1. 确定性方法
    • 静态模型(EXP/ZIP)
  • 优点:无需历史数据、计算成本低,适合评估EV基础影响。

  • 缺点:忽略不确定性及驾驶模式,精度有限,适用于宏观趋势分析。
  • 应用案例:早期研究通过静态模型估算EV对电网的潜在负荷影响。
  1. 统计学方法
    • 蒙特卡洛模拟(MCS)
  • 核心思想:通过概率分布模拟用户行为(如出发时间、充电时长)。

  • 改进方向:结合电池老化模型(如双离子电池寿命预测)与Bass回归分析EV保有量,提升预测精度。

  • 案例:上海2015-2020年EV充电负荷预测显示,无序充电可能导致电网峰谷差增加10%-15%。

    • 马尔可夫链理论
  • 优势:捕捉状态转移(如充电、放电、空闲),适合时间序列建模。

  • 局限性:高维状态矩阵计算复杂度高,需简化应用场景。

    • ARIMA模型
  • 适用性:短期时间序列预测,需大量历史数据支持。

  • 问题:预测周期超过24小时后误差显著增加。

    • 机器学习方法
  • LSTM网络:在动态负荷预测中表现优异,平均绝对误差(MAPE)较传统方法降低5%。

  • FWA-BP混合模型:通过火炮算法优化神经网络参数,提升计算效率。

  • 案例:基于卷积神经网络(CNN)的负荷预测模型,误差减少24倍。

  1. 多因素融合模型
    • 考虑变量:用户行为(出行时间、里程焦虑)、环境因素(温度、节假日)、电池状态(SOC、老化)。
    • 创新模型:引入模糊逻辑处理不确定性,结合蒙特卡洛提升鲁棒性。

二、最优充放电调度策略
  1. 目标函数设计

    • 电网侧:最小化峰谷差、负荷波动(日负荷均方差)。
    • 用户侧:降低充电成本、减少电池损耗、提升用户满意度(如SOC维持0.75-0.9)。
    • 协同目标:兼顾可再生能源消纳与电网稳定性。
  2. 优化算法

    • 两阶段优化
  • 第一阶段(计划调度) :全局优化充放电计划与分时电价。

  • 第二阶段(实时调整) :基于实际偏差调整功率,限制充放电切换次数以延长电池寿命。

    • 智能算法
  • 粒子群优化(PSO) :用于动态电价策略与功率分配,收敛速度较快。

  • 自适应遗传算法:优化充放电时间与功率,常温/极端环境下调度误差低于5%。

  • NSGA-II多目标优化:生成Pareto解集平衡电网与用户利益。

  1. 关键约束条件

    • 电池约束:充放电功率限制(如0.3C-1C)、SOC安全范围(20%-90%)。
    • 电网约束:节点电压偏差、线路载流量。
    • 用户心理效应:里程焦虑量化模型,通过滚动时域优化降低心理效应至0.25以下。
  2. 调度策略类型

    • V2G技术:在负荷高峰期放电,低谷期充电,用户收益与电网削峰填谷双赢。
    • 分时电价引导:动态电价策略使充电成本降低10%-20%,同时平滑负荷曲线。
    • 集群调度:基于K-means分群,减少计算维度,提升实时响应速度。

三、负荷预测与调度的协同优化案例
  1. 风光-EV协同调度

    • 模型设计:以日负荷均方差最小和充放电成本最低为目标,优化风电/光伏与EV充放电功率。
    • 效果:某区域电网峰谷差减少30%,可再生能源消纳率提升15%。
  2. 城市配电网优化

    • 案例:南京理工大学研究结合出行链理论预测负荷,采用改进粒子群算法优化调度,用户成本降低18%,电网波动减少25%。
    • 技术细节:分布式控制架构分层优化,减少通信压力。
  3. 长时间尺度调度

    • 策略:日前-实时双层模型,考虑电池损耗与用户心理效应,通过滚动优化维持高用户满意度。
    • 结果:调度周期内电池损耗成本降低12%,用户参与度提升40%。

四、挑战与未来方向
  1. 数据驱动与不确定性建模

    • 问题:用户行为、天气等因素的随机性影响预测精度。
    • 解决方案:强化学习与数字孪生技术,实时更新预测模型。
  2. 多目标协同优化

    • 研究方向:集成碳交易机制、需求响应与EV调度,提升综合能源系统经济性。
  3. 电池健康管理

    • 创新点:动态调整充放电策略以平衡电网需求与电池寿命,如充放电切换次数限制。
  4. 政策与市场机制

    • 建议:设计差异化电价与补贴政策,激励用户参与V2G。

五、结论

电动汽车负荷预测与充放电调度需结合统计学模型、智能算法与多因素协同优化。蒙特卡洛模拟与LSTM网络在预测中表现突出,而两阶段优化与自适应遗传算法在调度中效果显著。未来研究需进一步融合人工智能与市场机制,推动EV与电网的高效互动。

📚2 运行结果

部分代码:

% the charged load
N_Charged_Load=zeros(num_slot,3); % 1) the base load, 2) the charged load, 3) the total load (from EV rates), 
N_Charged_Load(:,1)=L_b_mic; % the base load
for i=1:num_slot
    for j=1:num_EV
        N_Charged_Load(i,2)=N_Charged_Load(i,2)+N_x_Matrix(j,i)*F(j,i);
    end
    N_Charged_Load(i,3)=N_Charged_Load(i,1)+N_Charged_Load(i,2); % total load calculated from charged loads of individual EVs
end


% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%  Plot the results %%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%  Plot the results %%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plot the base load without EV charging
% load Glb_Chg_Load.txt;
figure;
xx=1:num_slot;
yy(:,1)=L_b_mic;  % the base load
yy(:,2)=v_Charged_Load(:,3); % globally optimal scheme
yy(:,3)=Charged_Load(:,3); %locally optimal scheme
yy(:,4)=N_Charged_Load(:,3); % Equal allocation scheme
plot(xx,yy);
ylabel('Load [KW]');
xlabel('Hour No.');
legend('Base load without EV charging','Total load with globally optimal EV charging','Total load with locally optimal EV charging','Total load with naive EV charging');

% conversion of charging rate matrix
G_x_Matrix_1D=reshape(v_x_Matrix', [], 1);  % globall optimal
L_x_Matrix_1D=reshape(x_Matrix', [], 1);  % locally optimal
N_x_Matrix_1D=reshape(N_x_Matrix', [], 1);  % naive

% the comparison of objective values    
obj_value=zeros(3,1);
obj_value(1)=k_0*sum(pow_p(yy(:,2),1)) + (k_1/2)*sum(pow_p(yy(:,2),2)) + beta*sum(square(F1)*square(G_x_Matrix_1D)) ...
        -k_0*sum(pow_p(L_b_mic(1:num_slot),1)) - (k_1/2)*sum(pow_p(L_b_mic(1:num_slot),2)); % total cost in globally optimal scheme
obj_value(2)=k_0*sum(pow_p(yy(:,3),1)) + (k_1/2)*sum(pow_p(yy(:,3),2)) + beta*sum(square(F1)*square(L_x_Matrix_1D)) ...
        -k_0*sum(pow_p(L_b_mic(1:num_slot),1)) - (k_1/2)*sum(pow_p(L_b_mic(1:num_slot),2)); % total cost in locally optimal scheme
obj_value(3)=k_0*sum(pow_p(yy(:,4),1)) + (k_1/2)*sum(pow_p(yy(:,4),2)) + beta*sum(square(F1)*square(N_x_Matrix_1D)) ...
        -k_0*sum(pow_p(L_b_mic(1:num_slot),1)) - (k_1/2)*sum(pow_p(L_b_mic(1:num_slot),2)); % total cost in Equal allocation scheme
    
imp_1=(obj_value(3)-obj_value(1))/obj_value(3);
imp_2=(obj_value(3)-obj_value(2))/obj_value(3);
fprintf('The objective value comparison: globally optimal scheme=%g, locally optimal scheme (group size %g) =%g, Equal allocation scheme=%g.\n',obj_value(1),group_size, obj_value(2),obj_value(3) );
fprintf('The improvement of the global optimal scheme is %g, the improvement of locally optimal scheme is %g.\n',imp_1, imp_2);


% plot the charged load in each interval
figure;
xx=1:num_slot;
zz(:,1)=v_Charged_Load(:,2); % globally optimal scheme
zz(:,2)=Charged_Load(:,2); %locally optimal scheme
zz(:,3)=N_Charged_Load(:,2); % Equal allocation scheme
plot(xx,zz);
ylabel('Charged load [KW]');
xlabel('Hour No.');
legend('Globally optimal scheme','Locally optimal scheme','Equal allocation scheme');


% the total charged energy
total_charged=0;
for i=1:num_EV
    total_charged=total_charged+ (Cap_battery-E_Charged(i,1));
end
fprintf('The total charged energy should be %g.\n',total_charged);
fprintf('The actual total charged energy:  globally optimal scheme=%g, locally optimal scheme=%g, Equal allocation scheme=%g.\n',...
    sum(yy(:,2)-yy(:,1)), sum(yy(:,3)-yy(:,1)), sum(yy(:,4)-yy(:,1)) );
    


% the load peak
Peak_based=max(L_b_mic); % the base load
Peak_Charged=max(Charged_Load(:,3)); % the load with EV charging
Peak_reduction=(Peak_based-Peak_Charged)/Peak_based;
fprintf('The peak comparison: base load=%g, globally optimal scheme=%g, locally optimal scheme=%g, Equal allocation scheme=%g KW.\n',...
    max(yy(:,1)), max(yy(:,2)), max(yy(:,3)), max(yy(:,4)) );

% the load standard deviation
std_based=std(L_b_mic); % the base load
std_Charged=std(Charged_Load(:,3)); % the load with EV charging
std_reduction=(std_based-std_Charged)/std_based;
fprintf('The standard deviation comparison: base load=%g, globally optimal scheme=%g, locally optimal scheme=%g, Equal allocation scheme=%g.\n',...
    std(yy(:,1)), std(yy(:,2)), std(yy(:,3)), std(yy(:,4)) );


fprintf('The number of the EVs is %g. The percentage of charging-only EVs is %g.\n', num_EV, P_Chg);

% plot the evolution of energy level for each EV (globally optimal scheme)
figure;
xxx=0:num_slot;
plot(xxx,v_Energy_variation(1:40,:));
ylabel('Energy [KWH]');
xlabel('Hour No.');
legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8','EV9','EV10');
title('The energy evolution in globally optimal scheme');

% plot the evolution of energy level for each EV (locally optimal scheme)
figure;
xxx=0:num_slot;
plot(xxx,Energy_variation);
ylabel('Energy [KWH]');
xlabel('Hour No.');
legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8','EV9','EV10');
title('The energy evolution in locally optimal scheme');

% plot the evolution of energy level for each EV (Equal allocation scheme)
figure;
plot(xxx,N_Energy_variation);
ylabel('Energy [KWH]');
xlabel('Hour No.');
legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8','EV9','EV10');
title('The energy evolution in Equal allocation scheme');

% % plot the charging rates for each EV
figure; 
EV_ID=65;
energy_mmm(1,:)=v_Energy_variation(EV_ID,:);
energy_mmm(2,:)=Energy_variation(EV_ID,:);
energy_mmm(3,:)=N_Energy_variation(EV_ID,:);
plot(xxx,energy_mmm);
ylabel('Energy [KWH]');
xlabel('Time (Hours)');
legend('Globally optimal scheme','Locally optimal scheme','Equal allocation scheme');
title('The energy evolution for an EV');

figure;
nnn(:,1)=v_x_Matrix(EV_ID,:)';%globally optimal scheme
nnn(:,2)=x_Matrix(EV_ID,:)';%locally optimal scheme
nnn(:,3)=N_x_Matrix(EV_ID,:)';%Equal allocation scheme
h=bar(xx,nnn);
ylabel('Rate [KW]');
xlabel('Time (Hours)');
legend('Globally optimal scheme','Locally optimal scheme','Equal allocation scheme');
title('The charging/discharging rate in globally optimal scheme');

% save glabol_x_Matrix.txt v_x_Matrix -ascii;
% save local_x_Matrix.txt x_Matrix -ascii;
% save naive_x_Matrix.txt N_x_Matrix -ascii;

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]麻秀范,王超,洪潇,等.基于实时电价的电动汽车充放电优化策略和经济调度模型[J].电工技术学报, 2016, 31(A01):13.

[2]韩鹏.智能电网中电动汽车充电的优化调度研究[D].东北大学,2012.DOI:10.7666/d.J0118626.

[3]袁洁.电动汽车充放电变流与调度控制技术研究[D].湖南大学[2025-04-15]. 

🌈Matlab代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值