💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
💥1 概述
基于联合双边滤波和局部梯度能量的多模态医学图像融合。作为生物医学诊断的强大辅助技术,近年来已成为热门话题。然而,对于许多医学图像融合算法来说,在融合性能、时间消耗和噪声鲁棒性之间的权衡仍然是一个巨大挑战。本文提出了一种有效、快速和稳健的医学图像融合方法。通过联合双边滤波引入了两层分解方案,能量层包含丰富的强度信息,结构层捕获了丰富的细节。然后,提出了一种基于结构张量和邻域能量的新型局部梯度能量算子,用于融合结构层,并引入了l1-max规则来融合能量层。在实验中对涵盖五种不同类别的医学图像融合问题的118对共注册医学图像进行了测试。比较了七种最新的代表性医学图像融合方法,并充分利用了六种代表性的质量评估指标来客观评价融合结果。广泛的实验结果表明,所提出的方法在视觉质量和定量评价方面均优于一些最新方法,并且实现了近乎实时的计算效率和对噪声的稳健性。
介绍
 由于成像传感器和机制的多样性,不同模态的医学图像可能反映出各种组织/器官信息。对于解剖成像技术,计算机断层扫描(CT)图像对于密集结构(如骨骼和植入物)非常敏感。然而,CT图像无法捕获软组织的详细信息。磁共振(MR)图像显示了高空间分辨率的软组织结构的解剖对比,但无法检测人体代谢活动的活动信息。MR-T1图像在一定程度上准确反映了解剖结构。相比之下,MR-T2提供了组织病变的细节。对于功能图像,正电子发射断层扫描(PET)图像可以反映细胞和分子的生物活动,单光子发射计算机断层扫描(SPECT)图像可以显示组织/器官在分子水平上的代谢活动信息。然而,PET和SPECT的空间分辨率相对较低。为了准确描述病灶,医生通常需要综合分析多种不同模态的医学图像,这可能不可避免地给临床应用带来一些不便和低效率。
一、研究背景与意义
随着生物医学技术的不断发展,多模态医学图像融合已成为辅助医生进行准确诊断的重要手段。不同模态的医学图像,如计算机断层扫描(CT)、磁共振(MR)、正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)等,能够反映出各种组织或器官的不同信息。然而,医生通常需要综合分析多种不同模态的医学图像,这可能会给临床应用带来一些不便和低效率。因此,研究一种有效、快速和稳健的医学图像融合方法具有重要意义。
二、研究内容与方法
本文提出了一种基于联合双边滤波和局部梯度能量的多模态医学图像融合方法。该方法通过联合双边滤波引入了两层分解方案,将图像分解为能量层和结构层。其中,能量层包含丰富的强度信息,而结构层则捕获了丰富的细节。
在融合过程中,本文提出了一种基于结构张量和邻域能量的新型局部梯度能量算子,用于融合结构层。同时,引入了l1-max规则来融合能量层。这种方法能够有效地保留原始图像中的有用信息,同时去除冗余和噪声。
三、实验结果与分析
为了验证所提方法的有效性,本文在实验中对涵盖五种不同类别的医学图像融合问题的118对共注册医学图像进行了测试。同时,比较了七种最新的代表性医学图像融合方法,并充分利用了六种代表性的质量评估指标来客观评价融合结果。
实验结果表明,所提出的方法在视觉质量和定量评价方面均优于一些最新方法。该方法能够实现近乎实时的计算效率,并且对噪声具有较强的鲁棒性。此外,该方法还能够有效地保留原始图像中的边缘和细节信息,提高融合图像的质量。
四、双边滤波与局部梯度能量的作用
- 双边滤波:双边滤波是一种非线性滤波器,它通过同时考虑像素的空间位置和颜色相似性来平滑图像。在医学图像处理中,双边滤波可以有效地去除噪声,同时保留图像的边缘和细节信息。本文利用双边滤波对医学图像进行预处理,以提高后续融合过程的准确性和效率。
- 局部梯度能量:局部梯度能量是一种用于描述图像局部特征的方法。在医学图像融合中,局部梯度能量可以用于评估不同模态图像之间的相似性和差异性。本文提出了一种基于结构张量和邻域能量的新型局部梯度能量算子,用于融合结构层。该算子能够更准确地反映图像中的边缘和细节信息,从而提高融合图像的质量。
五、结论与展望
本文提出了一种基于联合双边滤波和局部梯度能量的多模态医学图像融合方法。该方法在实验中取得了良好的表现,并在视觉质量和定量评价方面均优于一些最新方法。未来,我们将继续研究如何进一步优化该方法,提高其在不同模态医学图像融合中的适用性和准确性。同时,我们还将探索将该方法应用于更多类型的医学图像融合问题中,以推动生物医学技术的进一步发展。
总之,基于联合双边滤波和局部梯度能量的多模态医学图像融合方法是一种有效、快速和稳健的医学图像融合技术。它能够为医生提供更准确、更全面的诊断信息,从而有助于提高医疗水平和患者的生活质量。
📚2 运行结果






部分代码:
%% RGB to YUV
 B_YUV=ConvertRGBtoYUV(B);   
 BB=B_YUV(:,:,1);            
 E1 = RollingGuidanceFilter(A,s,r,1);    
 E2 = RollingGuidanceFilter(BB,s,r,1);
 S1= A-E1;                  S2= BB-E2;
 LGE1=STO(S1).*local_energy(S1,N);         
 LGE2=STO(S2).*local_energy(S2,N);
 map=(LGE1>LGE2);
 map=majority_consist_new(map,T);        
 FS=map.*S1+~map.*S2;                    % fused structure layer                
 map2=abs(E1>E2);
 FE= E1.*map2+~map2.*E2;                 % fused energy layer               
 F=FE+FS;                                % temp fused result    
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

 
                   
                   
                   
                   
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1294
					1294
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            