tensorflow中的tf.meshgrid()的用法

1.举一个例子:使用tf.meshgrid()画函数:
通过在x轴上进行采样100个数据点,y轴上采样100个数据点,利用tf.meshgrid(x,y)可实现10000个数据点的张量数据,保存在shape[100,100,2]
tf.meshgrid()会返回在axis=2维度切割的2个张量A和B,其中张量A中包含了所有点的x坐标,B包含了所有点的y坐标,shape都为[100,100]
在这里插入图片描述

import tensorflow as tf
import matplotlib
from matplotlib import pyplot as plt
#导入三维坐标支持
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

x=tf.linspace(-8.,8,100)#设置x轴的采样点
y=tf.linspace(-8.,8,100)#设置y轴的采样点

x,y=tf.meshgrid(x,y)#生成网格点,并内部拆分后返回
#x.shape,y.shape#打印拆分后的所有点的x,y坐标张量tensor
z=tf.sqrt(x**2+y**2)
z=tf.sin(z)/2

fig=plt.figure()
ax=Axes3D(fig)
#根据网格绘点制sinc函数三维曲面
ax.contour3D(x.numpy(),y.numpy(),z.numpy(),50)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值