【PM2.5浓度预测】Tent混沌映射改进的麻雀算法优化BP神经网络PM2.5浓度预测【含Matlab源码 2467期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、改进麻雀搜索算法优化BP神经网络

近年来,随着经济的飞速发展、城市工业化的不断推进及城市化进程的加快,城市污染问题逐渐突出,PM2. 5 浓度成为判断城市空气质量的重要参考指标[1-2]。因此,有效预测 PM2. 5 浓度并采取干预措施,对降低健康风险具有重要意义。目前 PM2. 5浓度预测模型可分为确定型模型、统计学模型及机器学习预测模型 3 大类[3]。与传统的确定型和统计学模型相比,机器学习模型具有良好的泛化能力,能够依据大气污染物和气象因素与 PM2. 5 浓度之间的非线性关系,获得较高的预测精度,如随机森林、支持向量、神经网络等模型。BP 神经网络具有较强的非线性映射、学习、自适应及容错能力,被广
泛应用于 PM2. 5 浓度预测[4]。文献[5]建立了基于历史污染物浓度数据的 BP 神经网络预测模型,预测结果的准确率达 70%以上。由于传统 BP 神经网络收敛速度慢、易陷入局部最优,粒子群、灰狼、遗传算法等元启发式算法被广泛应用于 BP 神经网络优化。文献[6]利用遗传算法优化 BP 神经网络,对 PM2. 5 浓度进行了预测,该模型具有较好的学习、泛化能力,但未考虑气象因素的影响。文献[7]利用粒子群优化算法改进遗传算法,优化 BP 神经网络的初始权值和阈值,获得了良好的 PM2. 5 浓度预测效果。针对上述元启发式算法存在的寻优能力差、收敛速度慢等问题,本文提出一种改进麻雀搜索算法( improved sparrow search algorithm,ISSA) ,对 BP 神经网络模型的初始权值和阈值进行优化,避免模型陷入局部最优; 结合空气质量和气象数据,利用 ISSA-BP 神经网络模型进行 PM2. 5 浓度预测,并与 BP 神经网络、SSA-BP 神经网络预测结果进行对比,以验证 ISSA-BP 的可靠性。

**1 ISSA-BP 神经网络模型

  1. 1 BP 神经网络**
    BP 神经网络是由文献[8—9]首次提出的一种根据误差进行训练的多层反向反馈神经网络模型。该模型的特点是信号向前传播,误差向后传播,实现一种从输入到输出的任意的非线性映射[10]。BP神经网络模型分为输入层、隐含层、输出层 3 层网络结构。正向传播中,输入信号经隐含层分配权重,传递到输出层计算输出值。正向传播完成后,若预测结果超出期望误差,则利用反向传播修改权值和阈值,得到最优参数,以建立模型[11-12]。图 1 为 BP神经网络的结构示意图。
    在这里插入图片描述
    1. 2 麻雀搜索算法
    SSA( sparrow search algorithm) 是受麻雀觅食行为和反捕食行为启发而提出的一种新型群智能优化算法,与其他算法相比,具有搜索精度高、稳健性强的特点[13-14]。麻雀种群内部存在明显的分工,一部分麻雀负责觅食并提供觅食指导,其余麻雀则进行食物获取。同时,麻雀意识到危险时,会及时发出警报信号,整个种群将立刻做出反捕食行为[15]。
    在这里插入图片描述
    在这里插入图片描述

1. 3 改进麻雀搜索算法
改进麻雀搜索算法首先利用 PWLCM 混沌映射初始化种群,增强全局搜索能力; 然后在更新发现者位置时加入非线性权重,协调局部搜索和全局搜索能力,加快收敛速度; 最后利用萤火虫扰动优化策略对最优解位置进行扰动,产生新解,避免陷入局部最优。

1. 3. 1 混沌映射
SSA 采用随机生成的方式对种群进行初始化,使得麻雀种群分布均匀,影响后期迭代寻优。而混沌映射具有随机性和规律性,对初始条件和遍历性较敏感,可使用混沌序列对麻雀种群进行初始化[16]。目前常用的混沌映射有 Logistics 映射[17]、Tent 映射[18]、PWLCM 映射[19]等。其中 PWLCM 映射更加均匀且分布稳定,本文采用该映射进行种群初始化,其表达式为
在这里插入图片描述
式中,β 为控制参数。为控制参数 β 和 x0 赋值,经循环迭代得到 0~1 的随机序列。
1. 3. 2 非线性惯性权重
SSA 算法中缺乏对于步长的有效控制,发现最优解后,其他个体迅速向最优解靠拢,难以协调局部寻优和全局寻优能力,从而陷入局部最优。因此,引入非线性惯性权重控制搜索范围和收敛速度[16,20]。惯性权重计算方式为
在这里插入图片描述
在迭代过程中,随着惯性权重的不断自适应变化,将有利于协调算法在探索与开发之间的平衡,改进后的发现者位置更新规则为
在这里插入图片描述
1. 4 ISSA-BP 算法步骤
( 1) 初始化预测网络,确定输入层、隐含层及输出层的节点数。
( 2) 利用 PWCLM 混沌映射初始化种群,将模型中的权值和阈值表示为 ISSA 算法中 d 维空间向量。
( 3) 完成 ISSA 参数初始化。
( 4) 计算个体适应度值并排序,得到最优和最差适应度及其对应个体位置。
( 5) 选取位置较优的个体为发现者,按照发现者位置更新规则进行位置更新。
( 6) 将剩余个体作为追随者,并按照位置更新规则更新位置。
( 7) 随机选取部分个体为警戒者,进 行 位 置更新。
( 8) 计算更新后种群的适应度,找 到 全 局 最优个体,对其进行萤火虫扰动,产生新解。
( 9) 计算种群适应度,判断是否达到结束条件。若是,则程序结束,输出最优解; 否则跳转至步骤( 2) ,继续执行。
( 10) 将网络最优结构参数输入 BP 神经网络结构中,进行网络训练。

1. 5 模型评价指标
针对 PM2. 5 浓度预测这一回归问题,本文采用均方根误差( RMSE) 、平均绝对误差( MAE) 和平均绝对百分误差( MAPE) 作为 BP、SSA-BP、ISSA-BP神经网络预测模型的评价指标,公式分别为
在这里插入图片描述

⛄二、部分源代码

%% 初始化
clear
close all
clc
warning off

%% 数据读取
data=xlsread(‘bj.xlsx’,‘Sheet1’,‘A2:D238’); %%使用xlsread函数读取EXCEL中对应范围的数据即可

%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值

N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目

%% 划分训练集、测试集
input_train = input(1:trainNum,:)‘;
output_train =output(1:trainNum)’;
input_test =input(trainNum+1:trainNum+testNum,:)‘;
output_test =output(trainNum+1:trainNum+testNum)’;

%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax(‘apply’,input_test,inputps);

%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp(‘/’)
disp(‘神经网络结构…’)
disp([‘输入层的节点数为:’,num2str(inputnum)])
disp([‘输出层的节点数为:’,num2str(outputnum)])
disp(’ ')
disp(‘隐含层节点的确定过程…’)

%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
MSE=1e+5; %初始化最小误差
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10

%构建网络
net=newff(inputn,outputn,hiddennum);
% 网络参数
net.trainParam.epochs=1000;         % 训练次数
net.trainParam.lr=0.01;                   % 学习速率
net.trainParam.goal=0.000001;        % 训练目标最小误差
% 网络训练
net=train(net,inputn,outputn);
an0=sim(net,inputn);  %仿真结果
mse0=mse(outputn,an0);  %仿真的均方误差
disp(['隐含层节点数为',num2str(hiddennum),'时,训练集的均方误差为:',num2str(mse0)])

%更新最佳的隐含层节点
if mse0<MSE
    MSE=mse0;
    hiddennum_best=hiddennum;
end

end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]赵侃,师芸,牛敏杰,王虎勤.基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测[J].测绘通报. 2022(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值