✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、模拟退火算法简介
1 模拟退火算法的原理
模拟退火算法(SA)是一种适用于大规模组合优化问题的有效近似算法,来源于对固体退火过程的模拟。统计力学表明,在给定初始温度的条件下,通过将温度缓慢降低,微观粒子会在各个温度达到热平衡状态,当物体冷却到常温时达到基态,内能达到最小。模拟固体退火的过程,给定一个初始温度和初始解,随着温度的下降,每一个温度状态下,通过解的变换生成新的解。如果解的目标函数值小于前一个解,接受当前解;否则,以概率接受新解。最终的解是迭代寻优的结果。模拟退火算法以概率突跳性,能够跳出局部最优陷阱,找到全局最优解。模拟退火算法依据Metropolis接收准则接受新解,而不是使用完全确定的规则。它构成了模拟退火算法退火过程的基础。当固体从状态i经过降温变化到状态j,它所具有的能量从E(i)变化到E(j)。显然,如果E(j)<E(i),接受新的状态j。否则,依据概率P接受新解。
其中,K是物理学波尔兹曼常数,T是固体的温度。
这种概率,在路径规划的问题中,就是当新解的目标函数值小于原来的解的函数值,新解仍被接受的概率。以x表示温度T下的一个解,通过退火,可以生成一个新解x′。那么,接收x′的概率为:
2 模拟退火算法模型的建立
2.1 目标函数
首先,规定解空间。对销售点B,C,U重新进行编号(2,3,…,21),A点为产业园,既是起点也是终点,将它进行两次编号,记为1号和22号,以便于程序计算。问题转化为求解从1出发,走遍所有中间点,到达22的一个最短路径。本文通过运用百度拾取坐标系统,获得产业园和商铺点的经纬度信息。由于,本文选取的点的范围在徐州都市圈,两点之间的曲线距离可以近似看作直线距离。用k1和k2分别表示经度、纬度和千米的换算系数,将经纬度转换为千米。通过改进坐标距离公式计算距离:
计算得到皮草产业园和所有销售点中,任意两点间的距离,构成一个对称矩阵D=(dij)22×22。规定z1,z2,…,z22中,z2,z3,…z21,是由2~21随机打乱得到的一组数,则dzizi+1表示所有可能路径中,第i个和第i+1个经过的点间的距离。目标函数为运输经过所有目标的路径长度最小:
2.2 模拟退火算法实现过程
Step 1初始化
通过MATLAB随机模拟数给定初始路径,计算得到初始路径长度。设定初始温度T(0)=1。
Step 2产生新解
运用变换法,任选序号a,b(a<b),交换a和b之间的顺序,得到新的路径:
Step 3判定标准
新路径与原路径长度的差可以表示为:
当路径差Δf<0时,用新路径代替原路径。否则,以概率exp(-Δf/T)接受新的路径。
Step 4重复步骤2和步骤3,进行迭代。
Step 5结束条件
选用降温系数α,令T←αT,得到新的温度。当温度降至终止温度,算法结束,输出当前状态。
⛄二、部分源代码
clc;
clearvars;
close all;
%% Problem Definition
model=CreateModel(); % Select Model of the Problem
CostFunction=@(q) MyCost(q,model); % Cost Function
alpha1=0.15; %percent of destroy customers
%% SA Parameters
MaxIt=400; % Maximum Number of Iterations
T0=10; % Initial Temperature
alpha=0.2; % Temperature Damping Rate
tour=parallel_savings_init(model); % Create initail solution by CW Saving
tour(cellfun(@(routes) any(isnan(routes)),tour)) = [];
for i=1:numel(tour)
tour{i}=[1,tour{i},1];
end
x.tour=tour;
x.Cost=DisAllRoute(model,x.tour);
% Update Best Solution Ever Found
BestSol=x;
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,3);
T=T0;
tic;
%% SA Main Loop
for it=1:MaxIt
% Create Destroy
[xnew.Ldestroy,xnew.list,m]=CreateDestroy(model,x.tour,alpha1);
try
[xnew.Lrepair,xnew.unrouted,n]=CreateRepair(model,xnew);
catch
break
end
xnew.Cost=DisAllRoute(model,xnew.Lrepair);
if xnew.Cost<=x.Cost
% xnew is better, so it is accepted
x=xnew;
x.tour=xnew.Lrepair;
if rand<=p
x=xnew;
x.tour=xnew.Lrepair;
end
end
% Update Best Solution
if x.Cost<=BestSol.Cost
BestSol=x;
end
%% Results
disp([’ Time = ’ num2str(toc)]);
disp([‘GAP LNS = ’ (num2str((min(BestCost(:,3))-model.Best)/model.Best*100)) ’ %’]);
figure(1);
plot(BestCost(:,3),‘LineWidth’,2);
xlabel(‘Iteration’);
ylabel(“Cost”);
figure(2);
PlotSolution(model,BestSol.tour);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]王旭颖,杨金云,陈哲,倪秋铭,刘朱丹.基于模拟退火算法的电商物流配送问题研究[J].中国管理信息化. 2021,24(07)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合