💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab优化求解仿真内容点击👇
①Matlab优化求解(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、双种群遗传算法求解生产线平衡问题简介
1 双种群遗传算法
双种群遗传算法是一种改进的遗传算法,它将种群分为两个子群体,每个子群体都有自己的进化过程。在进化过程中,每个子群体都会进行选择、交叉和变异等操作,但是它们之间也会进行信息交流,以便更好地利用全局搜索空间。这种算法可以有效地提高搜索效率和收敛速度,特别是在处理复杂问题时表现出色。
2 双种群遗传算法步骤
双种群遗传算法是一种改进的遗传算法,它将种群分为两个子种群,分别进行进化,以提高算法的搜索效率和收敛速度。其步骤如下:
(1)初始化:设定算法参数,包括种群大小、交叉率、变异率等。
(2)生成初始种群:随机生成两个子种群的初始种群。
(3)评估适应度:对每个个体计算适应度值。
(4)选择:从两个子种群中分别选择一定数量的个体作为父代,用于产生下一代。
(5)交叉:对两个子种群中的父代进行交叉操作,生成新的个体。
(6)变异:对交叉后的个体进行变异操作,引入新的基因。
(7)合并种群:将两个子种群合并为一个种群。
(8)评估适应度:对新的种群中的每个个体计算适应度值。
(9)选择:从新的种群中选择一定数量的个体作为下一代的父代。
(10)重复步骤5-9,直到达到终止条件。
3 双种群遗传算法求解生产线平衡问题
双种群遗传算法是一种用于求解生产线平衡问题的优化算法。该算法通过重新排列和分配生产工序,以最大化提高生产效率。该算法使用两个种群的分工协作来解决容易陷入局部最优、效率不高的问题。一个种群负责探索可能存在最优值的区域,另一个种群则在第一个种群所探索的区域中寻找最优解。
双种群遗传算法求解生产线平衡问题的步骤如下:
(1)确定生产线平衡问题的优化目标,例如最小化生产节拍、负荷均衡和最小化平衡损耗系数。
(2)将生产线平衡问题转化为数学模型,建立适当的数学公式和约束条件。
(3)设计双种群遗传算法,包括选择、交叉、变异等操作,并设置合适的参数。
(4)运行双种群遗传算法,得到一组较优的解。
(5)对得到的解进行评估和选择,选择最优解作为生产线平衡方案。
(6)针对所选方案进行仿真验证,检验其可行性和有效性。
(7)如有必要,对方案进行进一步优化和改进,直至达到最优解。
⛄二、部分源代码
clc % 清空Workspace, Command Window 和Figure
clear
close all
%set(gcf,‘outerposition’,get(0,‘screensize’)); % 最大化显示图像 % 参数初始化
Num_Work=5; % 装配线工位数
Num_Pop1=100; % 初始种群1个数
Num_Pop2=100; % 初始种群2个数
Num_Exc=5; % 交换基因数目
Pro_C1=0.8; % 初始种群1交叉概率
Pro_C2=0.2; % 初始种群2交叉概率
Pro_M1=0.2; % 初始种群1变异概率
Pro_M2=0.05; % 初始种群2变异概率
Num_Gene=10; % 繁衍代数
[Time,Matrix]=SHL(); % 各工位时间及优先关系矩阵
l1=length(Time);
G=tp(l1,Matrix); %g工序有向图
% 产生初始种群
Pop1=Ini_Pop(Matrix,Num_Pop1); % 初始种群1
Pop2=Ini_Pop(Matrix,Num_Pop2); % 初始种群2
% 遗传算法的迭代计算
Pop11=Pop1;
Pop21=Pop2;
for i=1:1:Num_Gene
% 种群1迭代
Dec_Pop1=Decoding(Pop11,Time,Num_Work); % 译码
Fit_Pop1=Fitness(Dec_Pop1,Num_Work,Time,Pop11); % 求适应度
Sel_Pop1=Selection(Fit_Pop1,Num_Pop1,Pop11); % 选择
Cro_Pop1=Crossover(Sel_Pop1,Pro_C1); % 交叉
Mut_Pop1=Mutation(Cro_Pop1,Pro_M1,Matrix); % 变异
Pop12=Mut_Pop1; % 最优保留
Dec_Pop12=Decoding(Pop12,Time,Num_Work);
Fit_Pop12=Fitness(Dec_Pop12,Num_Work,Time,Pop12);
[~,b1]=max(Fit_Pop1); % 将最坏基因的用最好的替代
[~,b2]=min(Fit_Pop12);
Pop12(b2,:)=Pop11(b1,:);
%种群2迭代
Dec_Pop2=Decoding(Pop21,Time,Num_Work); % 译码
Fit_Pop2=Fitness(Dec_Pop2,Num_Work,Time,Pop21); % 求适应度
Sel_Pop2=Selection(Fit_Pop2,Num_Pop2,Pop21); % 选择
Cro_Pop2=Crossover(Sel_Pop2,Pro_C2); % 交叉
Mut_Pop2=Mutation(Cro_Pop2,Pro_M2,Matrix); % 变异
Pop22=Mut_Pop2; % 最优保留
Dec_Pop22=Decoding(Pop22,Time,Num_Work);
Fit_Pop22=Fitness(Dec_Pop22,Num_Work,Time,Pop22);
[a3,b3]=max(Fit_Pop2);
[a4,b4]=min(Fit_Pop22);
Pop22(b4,:)=Pop21(b3,:);
% 种群1与种群2交叉
[Pop11,Pop21]=Exchange(Pop12,Pop22,Num_Exc,Time,Num_Work);
%求出每次迭代的最优结果,并画图显示
Dec_Pop01=Decoding(Pop11,Time,Num_Work);
Fit_Pop01=Fitness(Dec_Pop01,Num_Work,Time,Pop11);
[a01,b01]=max(Fit_Pop01);
Dec_Pop02=Decoding(Pop21,Time,Num_Work);
Fit_Pop02=Fitness(Dec_Pop02,Num_Work,Time,Pop21);
[a02,b02]=max(Fit_Pop02);
if a01>a02
Pop00=Pop11(b01,:);
Dec_Pop00=Decoding(Pop11(b01,:),Time,Num_Work);
else
Pop00=Pop21(b02,:);
Dec_Pop00=Decoding(Pop21(b02,:),Time,Num_Work);
end
Draw(Pop00,Dec_Pop00,Time); % 绘图函数
pause(0.0010); % 延时函数
if (max(Dec_Pop00)==52) % 判断迭代是否完成
msgbox({‘迭代完成,迭代次数为’,num2str(i)})
break;
end
end
%% 迭代完成后计算最终结果
Dec_Pop1=Decoding(Pop11,Time,Num_Work);
Fit_Pop1=Fitness(Dec_Pop1,Num_Work,Time,Pop11);
[a1,b1]=max(Fit_Pop1);
Dec_Pop2=Decoding(Pop21,Time,Num_Work);
Fit_Pop2=Fitness(Dec_Pop2,Num_Work,Time,Pop21);
[a2,b2]=max(Fit_Pop2);
if a1>a2
Pop=Pop11(b1,:);
Dec_Pop=Decoding(Pop11(b1,:),Time,Num_Work);
else
Pop=Pop21(b2,:);
Dec_Pop=Decoding(Pop21(b2,:),Time,Num_Work);
end
%输出结果
for i=1:Num_Work
disp([‘第’,num2str(i),‘工位总加工时间为:’,num2str(Dec_Pop(i))])
end
Draw(Pop,Dec_Pop,Time);
hold on
figure(2)
plot(G);
save data
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合