【语音去噪】低通+自适应滤波去噪【含Matlab源码 352期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、自适应滤波简介

自适应滤波是近30年以来发展起来的关于信号处理技术的方法。它是在维纳滤波、Kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能,从而在工程实际中,尤其在信息处理技术中得到了广泛的应用。
维纳滤波器等滤波器设计方法都是建立在信号特征先验知识基础上的。遗憾的是,在实际应用中常常无法得到信号特征先验知识,在这种情况下,自适应滤波器能够得到比较好的滤波性能。当输入信号的统计特性未知,或者输入信号的统计特性变化时,自适应滤波器能够自动地迭代调节自身的滤波器参数,以满足某种准则的要求,从而实现最优滤波。
自适应滤波的研究对象是具有不确定的系统或信息过程。这里的“不确定性”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因素和随机因素。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法的研究是自适应信号处理中最为活跃的研究课题之一,包括线性自适应算法和非线性自适应算法。非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应算法。
1 自适应滤波的基本原理
在这里插入图片描述
2 自适应滤波算法种类
2.1 最小均方误差算法(LMS)
由Widrow和Hoff提出的最小均方误差(LMS)算法,因其具有计算量小、易于实现等优点而在实践中被广泛采用。
在这里插入图片描述
2.2 递推最小二乘算法(RLS)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 变换域自适应滤波算法
对于强相关的信号,LMS算法的收敛性能降低,这是由于LMS算法的收敛性能依赖于输入信号自相关矩阵的特征值发散程度。输入信号自相关矩阵的特征值发散程度越小,LMS算法的收敛性能越好。经过研究发现,对输入信号作某些正交变换后,输入信号自相关矩阵的特征值发散程度会变小。于是,Dentino等1979年首先提出了变换域自适应滤波的概念,其基本思想是把时域信号转变为变换域信号,在变换域中采用自适应算法。Narayan等对变换域自适应滤波算法作了全面的总结。
变换域自适应滤波算法的一般步骤是:
在这里插入图片描述
在这里插入图片描述
2.4 仿射投影算法
在这里插入图片描述
2.5 其他
共轭梯度算法
基于子带分解的自适应滤波算法
基于QR分解的自适应滤波算法
其他不再具体说明。

3 自适应滤波算法性能评价
下面对各种类型的自适应滤波算法进行简单的总结分析。变步长的自适应滤波算法虽然解决了收敛速度、时变系统跟踪速度与收敛精度方面对算法调整步长因子u的矛盾,但变步长中的其它参数的选取还需实验来确定,应用起来不太方便。对RLS算法的各种改进,其目的均是保留RLS算法收敛速度快的特点而降低其计算复杂性。变换域类算法亦是想通过做某些正交变换使输入信号自相关矩阵的特征值发散程度变小。提高收敛速度。
而仿射投影算法的性能介于LMS算法和RLS算法之间。共轭梯度自适应滤波算法的提出是为了降低RLS类算法的杂性和克服某些快速RLS算法存在的数值稳定性问题。信号的子带分解能降低输入信号的自相关矩阵的特征值发散程度,从而加快自适应滤波算法的收敛速度,同时便于并行处理,带来了一定的灵活性。矩阵的QR分解具有良好的数值稳定性。

⛄二、部分源代码

clc;
clear all;
close all;

%% 产生信号源
[X,Fs] = audioread(‘song.wav’);
s = X(:,1); %取出双通道中其中一个通道作为信号源s
audiowrite(‘原始音频.wav’,s,Fs); %创建原始音频.wav
n = length(s);
t=(0:n-1);
figure(1);
subplot(4,1,1);
plot(t,s);grid;ylim([-2 2]);
ylabel(‘幅度’);
xlabel(‘时间’);
title(‘原始音频信号’);
%% 产生均值为0方差为0.1的噪声信号
v = sqrt(0.1)*randn(n,1);

%% 产生AR模型的噪声
ar=[1,1/2]; %AR模型
v_ar=filter(1,ar,v);
% subplot(4,1,2);
% plot(t,v_ar);grid;
% ylabel(‘幅度’);
% xlabel(‘时间’);
% title(‘AR模型噪声信号’);

%% 产生MA模型的噪声 是AR模型的相关噪声
ma=[1,-0.8,0.4,-0.2]; %MA模型
v_ma=filter(ma,1,v);
subplot(4,1,2);
plot(t,v_ma);grid;ylim([-2 2]);
ylabel(‘幅度’);
xlabel(‘时间’);
title(‘相关噪声信号’);

%% 产生期望信号
dn = s + v_ar;
audiowrite(‘含噪音频.wav’,dn,Fs); %创建含噪音频
subplot(4,1,3);
plot(t,dn);grid;ylim([-2 2]);
ylabel(‘幅度’);
xlabel(‘时间’);
title(‘含噪音频信号’);

%% LMS滤波算法
M = 50; %滤波器阶数M
mu = 0.0008; %滤波器的步长
[ylms,W,elms] =LMS(v_ma,dn,M,mu);

%% 绘制去噪后的语音信号
subplot(4,1,4);
plot(t,elms);grid;ylim([-2 2]);
ylabel(‘幅度’);
xlabel(‘时间’);
title(‘去噪后的音频信号’);
audiowrite(‘去噪音频.wav’,elms,Fs);%保存去除噪声的音频

%%
e = s-elms;%剩余噪声
figure(2);
subplot(2,1,1);
plot(t,e);grid;
ylabel(‘幅度’);
xlabel(‘时间’);
title(‘剩余噪声’);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值