💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab语音处理仿真内容点击👇
①Matlab语音处理(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、DTW简介
一个应用DTW的说话人识别系统如图8-4所示。它是与文本有关的说话人确认系统。它采用的识别特征是BP FG(附听觉特征处理) , 匹配时采用DTW技术。其特点为:①在结构上基本沿用语音识别的系统。②利用使用过程中的数据修正原模板,即当在某次使用过程
中某说话人被正确确认时使用此时的输人特征对原模板作加权修改(一般用1/10加权)。
这样可使模板逐次趋于完善。
采样时间间隔为2.5ms,所存的字音模板数为15x16,即15个说话人各自的16个规定音。建立模板时,每个说话人对各字音各发音10次再经适当平均得到上述的各模板。在确认过程中,要求待确认者在他已知的116个字音中任选2~4个。先任选2个字,将2个字所得的“计分”(距离的倒数)相加,若已超过判决逻辑中所设定的阈值则予以肯定。否则,令待确认者另选16个字中其它字音并将计分加权累计,直到共发4个字音。若仍未达到阈值,则给以拒绝。
这里提供一个典型的实验结果:对于1732个真的待确认者,经此系统的错误拒绝率为
0.6%;对于630个假的待证实者,错误接受率为0.3%。当然,适当改变阈值可以调整这
两种比率。
⛄二、部分源代码
function trimmed_X = my_vad(x)
%端点检测;输入为录入语音,输出为有用信号
Ini = 0.1; %初始静默时间
Ts = 0.01; %窗的时长
Tsh = 0.005; %帧移时长
Fs = 16000; %采样频率
counter1 = 0; %以下四个参数用来寻找起始点和结束点
counter2 = 0;
counter3 = 0;
counter4 = 0;
ZCRCountf = 0; %用于存储过零率检测结果
ZCRCountb = 0;
ZTh = 40; %过零阈值
w_sam = fix(TsFs); %窗口长度
o_sam = fix(TshFs); %帧移长度
lengthX = length(x);
segs = fix((lengthX-w_sam)/o_sam)+1; %分帧数
sil = fix((Ini-Ts)/Tsh)+1; %静默时间帧数
win = hamming(w_sam);
Limit = o_sam*(segs-1)+1; %最后一帧的起始位置
FrmIndex = 1:o_sam:Limit; %每一帧的起始位置
ZCR_Vector = zeros(1,segs); %记录每一帧的过零点数
%短时过零点
for t = 1:segs
ZCRCounter = 0;
nextIndex = (t-1)*o_sam+1;
for r = nextIndex+1:(nextIndex+w_sam-1)
if (x® >= 0) && (x(r-1) >= 0)
elseif (x(r) > 0) && (x(r-1) < 0)
ZCRCounter = ZCRCounter + 1;
elseif (x(r) < 0) && (x(r-1) < 0)
elseif (x(r) < 0) && (x(r-1) > 0)
ZCRCounter = ZCRCounter + 1;
end
end
ZCR_Vector(t) = ZCRCounter;
end
%短时平均幅度
Erg_Vector = zeros(1,segs);
for u = 1:segs
nextIndex = (u-1)*o_sam+1;
Energy = x(nextIndex:nextIndex+w_sam-1).*win;
Erg_Vector(u) = sum(abs(Energy));
end
IMN = mean(Erg_Vector(1:sil)); %静默能量均值(噪声均值)
IMX = max(Erg_Vector); %短时平均幅度的最大值
I1 = 0.03 * (IMX-IMN) + IMN; %I1,I2为初始能量阈值
I2 = 4 * IMN;
ITL = 100min(I1,I2); %能量阈值下限,前面系数根据实际情况更改得到合适结果
ITU = 10 ITL; %能量阈值上限
IZC = mean(ZCR_Vector(1:sil));
stdev = std(ZCR_Vector(1:sil)); %静默阶段过零率标准差
IZCT = min(ZTh,IZC+2*stdev); %过零率阈值
indexi = zeros(1,lengthX);
indexj = indexi;
indexk = indexi;
indexl = indexi;
%搜寻超过能量阈值上限的部分
for i = 1:length(Erg_Vector)
if (Erg_Vector(i) > ITU)
counter1 = counter1 + 1;
indexi(counter1) = i;
end
end
ITUs = indexi(1); %第一个能量超过阈值上限的帧
%搜寻能量超过能量下限的部分
for j = ITUs👎1
if (Erg_Vector(j) < ITL)
counter2 = counter2 + 1;
indexj(counter2) = j;
end
end
start = indexj(1)+1; %第一级判决起始帧
Erg_Vectorf = fliplr(Erg_Vector);%将能量矩阵关于中心左右对称,如果是一行向量相当于逆序
%重复上面过程相当于找结束帧
for k = 1:length(Erg_Vectorf)
if (Erg_Vectorf(k) > ITU)
counter3 = counter3 + 1;
indexk(counter3) = k;
end
end
%初始化DTW判别矩阵
Scores1 = zeros(1,N);
Scores2 = zeros(1,N);
Scores3 = zeros(1,N);
%加载模板数据
s1 = load(‘Vectors1.mat’);
fMatrixall1 = struct2cell(s1);
s2 = load(‘Vectors2.mat’);
fMatrixall2 = struct2cell(s2);
s3 = load(‘Vectors3.mat’);
fMatrixall3 = struct2cell(s3);
%计算DTW
for i = 1:N
fMatrix1 = fMatrixall1{i,1};
fMatrix1 = CMN(fMatrix1);
Scores1(i) = myDTW(fMatrix1,rMatrix);
end
for j = 1:N
fMatrix2 = fMatrixall2{j,1};
fMatrix2 = CMN(fMatrix2);
Scores2(j) = myDTW(fMatrix2,rMatrix);
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合