【风电功率预测】鱼鹰算法优化长短时记忆网络OOA-LSTM风电数据预测(含前后对比)【含Matlab源码 3774期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、鱼鹰算法优化长短时记忆网络OOA-LSTM风电数据预测

1 鱼鹰算法
鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。
鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米,体重1000-1750克。头部白色,头顶具有黑褐色的纵纹,枕部的羽毛稍微呈披针形延长,形成一个短的羽冠。头的侧面有一条宽阔的黑带,从前额的基部经过眼睛到后颈部,并与后颈的黑色融为一体。上体为暗褐色,略微具有紫色的光泽。下体为白色,胸部的暗色纵纹和飞羽,以及尾羽上相间排列的横斑均极为醒目。虹膜淡黄色或橙黄色,眼周裸露皮肤铅黄绿色,嘴黑色,蜡膜铅蓝色,脚和趾黄色,爪黑色。

鱼鹰栖息于湖泊、河流、海岸或开阔地,尤其喜欢在山地森林中的河谷或有树木的水域地带活动。常见在江河、湖沼及海滨一带飞翔,一见水中有饵,就直下水面,用脚掠之而去。趾具锐爪,趾底遍生细刺,外趾复能由前向后反转,这些都很适于捕鱼。在天气晴朗之日,盘旋于水面上空,定点后俯冲而下,再将捕获的鱼带至岩石、电杆、树上等地方享用。巢常营于海岸或岛屿的岩礁上。主要以鱼为食,有时也捕食蛙、蜥蜴、小型鸟类等其他小型陆栖动物。除了南极和北极,亚洲、北美洲等各大洲均有分布。

1.1鱼鹰优化算法原理
鱼鹰优化算法包含两个阶段:第一阶段为鱼鹰识别鱼的位置并捕鱼(全局勘探), 第二阶段为将鱼带到合适的位置( 局部开采),其详细设计如下:

1.1.1 种群初始化
1.1.2 全局勘探(第一阶段:位置识别和捕鱼)
鱼鹰是强大的猎人,由于其强大的视力,能够探测到水下鱼类的位置。在确定鱼的位置后,他们攻击它并通过潜入水下捕猎鱼。OOA中种群更新的第一阶段是基于对鱼鹰这种自然行为的模拟而建模的。对鱼鹰攻击鱼类进行建模会导致鱼鹰在搜索空间中的位置发生显著变化,这增加了OOA在识别最优区域和逃离局部最优方面的探索能力。在OOA设计中,对于每只鱼鹰,搜索空间中具有较好目标函数值的其他鱼鹰的位置被视为水下鱼类。每只鱼鹰的位置使用下式指定。

1.1.3 局部开采(第二阶段:将鱼带到合适的位置)
捕食鱼后,鱼鹰将其带到合适(对他来说安全)的位置,并在那里吃。OOA中更新种群的第二阶段是基于鱼鹰这种自然行为的模拟建模的。将鱼带到合适位置的建模导致鱼鹰在搜索空间中的位置发生微小变化,从而导致 OOA 在本地搜索中的开发能力增加,并在发现的解决方案附近收敛到更好的解决方案。在OOA的设计中,为了模拟鱼鹰的这种自然行为,首先,针对种群的每个成员,使用下式计算一个新的随机位置作为“适合吃鱼的位置”。然后,如果目标函数的值在这个新位置得到改善,则替换相应鱼鹰的先前位置。

⛄二、部分源代码

clear
close all
%% 数据读取
geshu=200;%训练集的个数
%读取数据
shuru=xlsread(‘数据的输入.xlsx’);
shuchu=xlsread(‘数据的输出.xlsx’);
nn = randperm(size(shuru,1));%随机排序
% nn=1:size(shuru,1);%正常排序
input_train =shuru(nn(1:geshu)😅;
input_train=input_train’;
output_train=shuchu(nn(1:geshu)😅;
output_train=output_train’;
input_test =shuru(nn((geshu+1):end)😅;
input_test=input_test’;
output_test=shuchu(nn((geshu+1):end)😅;
output_test=output_test’;
%样本输入输出数据归一化
[aa,bb]=mapminmax([input_train input_test]);
[cc,dd]=mapminmax([output_train output_test]);
global inputn outputn shuru_num shuchu_num
[inputn,inputps]=mapminmax(‘apply’,input_train,bb);
[outputn,outputps]=mapminmax(‘apply’,output_train,dd);
shuru_num = size(input_train,1); % 输入维度
shuchu_num = 1; % 输出维度
%% 利用向量加权算法选择最佳的BP参数
SearchAgents_no=6; % 狼群数量
Max_iteration=30; % 最大迭代次数
%优化维度
numsum=2;
dim=numsum;
ub=[200 0.15];%上限
lb=[10 0.01]; %下限
fboj=@(x)fun(x,inputn,outputn,shuru_num,shuchu_num);
[Alpha_score,Alpha_pos,Convergence_curve]=OOA(SearchAgents_no,Max_iteration,lb,ub,dim,fboj);

%% 参数选择结果赋值
x=Alpha_pos;
zhongjian1_num = round(x(1));
xue = x(2);
%% 模型建立与训练
layers = [ …
sequenceInputLayer(shuru_num) % 输入层
bilstmLayer(zhongjian1_num) % LSTM层
fullyConnectedLayer(shuchu_num) % 全连接层
regressionLayer];

options = trainingOptions(‘adam’, … % 梯度下降
‘MaxEpochs’,50, … % 最大迭代次数
‘GradientThreshold’,1, … % 梯度阈值
‘InitialLearnRate’,xue,…
‘Verbose’,0, …
‘Plots’,‘training-progress’); % 学习率
%% 训练LSTM
net = trainNetwork(inputn,outputn,layers,options);
%% 预测
net = resetState(net);% 网络的更新状态可能对分类产生了负面影响。重置网络状态并再次预测序列。
[~,Ytrain]= predictAndUpdateState(net,inputn);
test_simu=mapminmax(‘reverse’,Ytrain,dd);%反归一化
rmse = sqrt(mean((test_simu-output_train).^2)); % 训练集
%测试集样本输入输出数据归一化
inputn_test=mapminmax(‘apply’,input_test,bb);
[net,an]= predictAndUpdateState(net,inputn_test);
test_simu1=mapminmax(‘reverse’,an,dd);%反归一化
error1=test_simu1-output_test;%测试集预测-真实
%计算均方根误差 (RMSE)。
rmse1 = sqrt(mean((test_simu1-output_test).^2)); % 测试集
%% 画图
figure
plot(Convergence_curve);
xlabel(‘迭代次数’);
ylabel(‘RMSE’)
%将预测值与测试数据进行比较。
figure
plot(output_train)
hold on
plot(test_simu,‘.-’)
hold off
legend([“真实值” “预测值”])
xlabel(“样本”)
title(“训练集”)

figure
plot(output_test)
hold on
plot(test_simu1,‘.-’)
hold off
legend([“真实值” “预测值”])
xlabel(“样本”)
title(“测试集”)

% 真实数据,行数代表特征数,列数代表样本数output_test = output_test;
T_sim_optimized = test_simu1; % 仿真数据

num=size(output_test,2);%统计样本总数
error=T_sim_optimized-output_test; %计算误差
mae=sum(abs(error))/num; %计算平均绝对误差
me=sum((error))/num; %计算平均绝对误差
mse=sum(error.error)/num; %计算均方误差
rmse=sqrt(mse); %计算均方误差根
% R2=r
r;
tn_sim = T_sim_optimized’;
tn_test =output_test’;
N = size(tn_test,1);
R2=(N*sum(tn_sim.*tn_test)-sum(tn_sim)*sum(tn_test))2/((N*sum((tn_sim).2)-(sum(tn_sim))2)*(N*sum((tn_test).2)-(sum(tn_test))^2));

disp(’ ‘)
disp(’----------------------------------------------------------')

disp(['平均绝对误差mae为: ',num2str(mae)])
disp(['平均误差me为: ',num2str(me)])
disp(['均方误差根rmse为: ',num2str(rmse)])
disp(['相关系数R2为: ’ ,num2str(R2)])

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]赵侃,师芸,牛敏杰,王虎勤.基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测[J].测绘通报. 2022(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值