昇思MindSpore助力海洋地形超分:清华大学黄小猛团队发布全球3弧秒(90 m)海陆DEM数据产品

        近日,昇思MindSpore【1】团队、昇腾AI4SCI Lab与清华大学地球系统科学系黄小猛教授科研团队联合推出适用于全球区域的DEM超分模型,同时发布了全球3弧秒(90 m)海陆DEM数据产品,该成果已发表于《科学通报》(Science Bulletin)上【2】。该工具首次提供了基于昇腾AI基础软硬件平台的解决方案,并且在RMSE指标、清晰度、细节等方面均优于目前广泛采用的超分模型。相关模型代码将依托于华为全场景AI框架昇思MindSpore进行开源、并将定期扩展与维护,旨在为全球产、学、研界领域伙伴提供基于昇思MindSpore的优质的人工智能软硬件解决方案。

        高分辨率数字高程模型(Digital Elevation Model,简称DEM)可提供精准的基础地理数据,因此在全球气候变化、海洋潮汐运动、地球球体物质交换等研究领域发挥着至关重要的作用。高分辨率全球海洋DEM是海洋地质和海洋测绘的前沿分支,为了解海底构造运动、海底演化过程提供直接依据。但由于技术限制和测绘成本等原因,获得高分辨率全球海洋DEM代价高昂。

        本次清华大学黄小猛课题组基于30 m分辨率的NASADEM卫星影像、联合国政府间海洋学委员会的450 m分辨率GEBCO_2021 公开数据和部分区域高分辨率海洋地形数据,采用深度残差预训练神经网络和迁移学习(Transfer Learning)相结合技术,构建了适用于全球区域的DEM-SRNet模型,发布了全球3弧秒(90 m)分辨率海洋和陆地DEM数据产品(GDEM_2022)。

图1. DEM-SRNet 模型架构

        该模型依托昇思MindSpore,重建了90 m(3弧秒)分辨率的全球DEM影像,对应坐标点高程值计算约933亿像素。本研究和鹏城实验室合作,基于昇思MindSpore、华为昇腾910 AI处理器和华为云ModelArts进行实验。与目前广泛采用的基于插值或者其他深度学习超分方法对比,所构建模型结果均优于同类方法。与基于插值的传统方法相比,GDEM_2022产品的RMSE指标平均提升 23.75%。通过对比GDEM_2022与GEBCO_2021,发现GDEM_2022在清晰度和细节方面优于GEBCO_2021。本研究再次证明了国产AI软硬件的可用与好用。该超分模型可以大大减少必要测量的海域或点的数量,很好地补充了海底的精细测绘和全球高分辨率海陆DEM地形图的构建。

图2. 3弧秒(90 m)全球DEM数据集GDEM_2022

        该成果是首个分辨率在百米以内的全球海陆DEM数据集,可以满足不同领域和不同层次对海洋测深数据的需求,为不同地形复杂度下全球海陆重力场与地形的关系、探索不同海陆构造单元的均衡机制、以及海陆地形对海洋潮流运动的影响等方面的研究提供重要支撑。未来,联合团队还会继续发布气象海洋预报相关创新模型,同时也会牵手更多的学术科研界合作伙伴,期望能够在海洋、大气领域上共同探索和进步。

全球GDEM_2022数据集以5°x5°进行划分,可在以下链接免费获取:清华大学云盘.

引用:

  1. Chen L. Deep Learning and Practice with MindSpore[M]. Springer Nature, 2021.
  2. Zhang, Bo, Wei Xiong, Muyuan Ma, Mingqing Wang, Dong Wang, Xing Huang, Le Yu et al. Super-resolution reconstruction of a 3 arc-second global DEM dataset[J]. Science bulletin, 2022.

昇思MindSpore:

Gitee:mindspore: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.

Github:GitHub - mindspore-ai/mindspore: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值