MindSpore Quantum白皮书正式发布!

白皮书:https://arxiv.org/pdf/2406.17248

代码仓:https://gitee.com/mindspore/mindquantum

如您在研究创新中使用了 MindSpore Quantum,可以用以下方式引用此白皮书。BibTeX格式:


@misc{xu2024mindspore,
      title={MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework},
      author={Xusheng Xu and Jiangyu Cui and Zidong Cui and Runhong He and Qingyu Li and Xiaowei Li and Yanling Lin and Jiale Liu and Wuxin Liu and Jiale Lu and others},
      year={2024},
      eprint={2406.17248},
      archivePrefix={arXiv},
      primaryClass={quant-ph},
      url={https://arxiv.org/abs/2406.17248},
}

随着量子计算技术的飞速发展,量子计算框架的设计和实现变得至关重要。MindSpore Quantum 是昇思MindSpore开源社区推出的新一代、开源量子经典混合计算框架。它与AI深度融合,支持多种量子神经网络的训练和推理,并聚焦于NISQ 阶段的算法实现与落地。结合高性能量子计算模拟器和并行自动微分能力,MindSpore Quantum 提供极简的开发模式和极致的性能体验,能够高效处理量子机器学习、量子化学模拟和量子组合优化等问题。

image.png

01 白皮书背景

在当今的量子计算领域,设计高效的变分量子算法至关重要。MindSpore Quantum依托昇思MindSpore这一先进的开源深度学习训练和推理框架,展示了在CPU等平台上设计和训练变分量子算法的卓越性能。特别是在变分量子算法方面,MindSpore Quantum展现了强大的能力,使得研究人员能够高效地进行算法设计和优化。

image.png

02 功能特性

MindSpore  Quantum 功能特性
1支持多种量子计算数据类型,并提供了强大的参数解析器
2在线路模拟后端,引入状态向量模拟器和密度矩阵模拟器,以处理纯态和混合态的模拟
3提供多种实用工具,变分量子算法的梯度计算工具、Ansatz线路库、简化量子算法子程序
4量子神经网络(QNN)、量子近似优化算法(QAOA)、变分量子特征值求解器(VQE)、数据重传分类器、Q-GAN、强化学习、量子奇异值分解(QSVD)等多种应用场景中展现了强大的能力
5引入QuPack量子模拟加速引擎,提升计算效率
6不断发展在真实量子硬件上的相关能力

1它支持多种量子计算数据类型,并提供了强大的参数解析器,包括参数生成器和解析器,以便在量子算法中灵活应用。框架中的量子门模块涵盖了固定量子门、参数化量子门以及自定义量子门等,用户可以通过这些模块构建各种复杂的量子线路。此外,框架还提供了丰富的可观测量和哈密顿量支持,包括量子比特和费米子操作符及相关的变换功能,进一步增强了量子计算的功能性与灵活性。

2在线路模拟后端方面,MindSpore Quantum引入了状态向量模拟器和密度矩阵模拟器,以处理纯态和混合态的模拟。特别是基于量子信道的噪声模拟器,通过量子信道和Channel Adder模块实现更真实的噪声模拟,极大地提升了模拟的精确度和可靠性。Channel Adder模块能够让使用者方便快速地自定义噪声模型,满足不同实验需求。

3为了帮助用户更好地使用变分量子算法,MindSpore Quantum提供了多种实用工具。例如,变分量子算法的梯度计算工具可以在多种应用场景下提供精确的梯度计算。同时,框架还包含一个专门为变分量子算法设计的Ansatz线路库,以及简化量子算法实现的量子算法子程序库。

4MindSpore Quantum不仅在基础的量子计算研究中表现出色,还在多种应用场景中展现了其强大的能力,包括量子神经网络(QNN)、量子近似优化算法(QAOA)、变分量子特征值求解器(VQE)、数据重传分类器、Q-GAN、强化学习、量子奇异值分解(QSVD)等。这些应用场景展示了MindSpore Quantum在量子计算研究中的广泛适用性,支持多种研究方向,极大地拓宽了量子计算的应用范围。

5为了进一步提升计算效率,MindSpore Quantum还引入了QuPack加速引擎。QuPack显著提升了VQE、QAOA和张量网络模拟的速度,为研究人员提供了前所未有的计算效率和性能。

6MindSpore Quantum在真实量子硬件上的相关能力还在不断发展中,目前已经具备了一些基础功能,包括量子线路编译和优化,以及量子比特映射。这些功能为未来的量子硬件应用奠定了基础。

03 性能测试

1、随机线路模拟任务

在文章中,我们将MindSpore Quantum与其他量子计算框架的性能进行了详细对比。在随机量子线路模拟任务中,MindSpore Quantum展现出了显著的性能优势。

image.png

在小比特数情况下,MindSpore Quantum的优势主要归因于其API调用开销较低。而在大比特数情况下,多线程并行计算和对常用量子门演化的高效实现,确保了MindSpore Quantum的性能卓越性。

2、量子近似优化算法任务

此外,我们还测试了各框架在量子近似优化算法(QAOA)任务中的表现。结果显示,MindSpore Quantum的性能比其他框架至少快一个数量级。这一优势主要是由于MindSpore Quantum在计算参数化量子线路梯度方面的深度优化,以及高效的线路演化实现。

image.png

04 展望未来

总的来说,MindSpore Quantum的推出,为量子计算研究人员和实践者提供了一个功能强大且高效的平台。通过结合先进的深度学习技术和量子计算框架,我们致力于推动量子计算领域的前沿发展。感谢所有参与MindSpore Quantum开发和研究的团队成员及合作伙伴,你们的努力使这一切成为可能。

我们希望通过这篇文章,能够引起更多研究人员和开发者的兴趣,共同探索量子计算的未来。有关MindSpore Quantum的更多信息,请参阅白皮书。如果您对 MindSpore Quantum有兴趣,请关注项目的Gitee代码仓。

白皮书:https://arxiv.org/pdf/2406.17248

代码仓:https://gitee.com/mindspore/mindquantum

点击文末【阅读原文】可直接跳转到白皮书内容。MindSpore Quantum采用 Apache License 2.0发布,可免费用于学术研究和商业用途。


徐旭升,1,∗ 崔江煜,1 崔子栋,2 何润洪,3 李清钰,2 李晓巍,4 林燕玲,5 刘家乐,5 刘武新,1 卢家乐,1 罗茂林,1 吕楚凡,2 潘世杰,1 Mosharev Pavel,1 舒润秋,6 唐加亮,7 徐若倩,7 徐树,1 杨康,1 于璠,1 曾庆国,4 赵海英,1 郑强,5 周俊园,1,† 周旭,8 朱祎康,5 邹作恒,1,‡ Abolfazl Bayat,2,9 曹希,10,9 崔巍,6 李振东,11 龙桂鲁,12,13 苏兆锋,5 王晓霆,2,9 王子竹,2,9 魏世杰,12 吴热冰,10 张潘,14 翁文康1, 4, 15, 16, 17, § 

1MindSpore Quantum Special Interest Group 
2电子科技大学
3中国科学院软件研究所 
4南方科技大学量子科学与工程研究院
5中国科学技术大学
6华南理工大学
7巴斯克大学

8中山大学

9电子科技大学量子物理与光量子信息教育部重点实验室
10清华大学
11北京师范大学
12北京量子信息科学研究院
13清华大学物理系低维量子物理国家重点实验室
14中国科学院理论物理研究所
15深圳国际量子研究院
16南方科技大学广东省量子科学与工程重点实验室
17南方科技大学深圳市量子科学与工程重点实验室

(Dated: July 9, 2024) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值