对比学习和数据增强是近年各领域关注度较高的研究方向,在推荐系统领域也是如此,并取得了众多成果。本文汇总了推荐系统领域对比学习和数据增强的最新论文和代码,涵盖 SIGIR、SIGKDD、RecSys、CIKM、AAAI、WSDM、WWW等会议和TKDE、TMM等期刊共计85篇论文,本次整理以长文和研究性论文为主,也包含部分短文和工业论文。欢迎大家在评论区或Github仓库提出建议或补充论文。具体论文和代码链接请见Github仓库。部分论文来自RUC AI Box的《800 篇顶会论文纵览推荐系统的前沿进展》,感谢他们的辛苦整理。
仓库地址
KingGugu/Awesome-Contrastive-Learning-and-Data-Augmentation-RS-Paper-Code
目录
Survey/Tutorial(综述/教程) Total Papers: 2
Only Data Augmentation(只有数据增强) Total Papers: 14
Graph Models with CL(序列推荐与对比学习)Total Papers: 27
Sequential Models with CL(图推荐与对比学习)Total Papers: 20
Other Tasks with CL(其他推荐任务与对比学习)Total Papers: 22
Survey/Tutorial
1.Self-Supervised Learning for Recommender Systems A Survey (Survey)
TKDE 2022, [PDF], [Code]
2.Self-Supervised Learning in Recommendation: Fundamentals and Advances (Tutorial)
WWW 2022, [Web]
Only Data Augmentation
1.Enhancing Collaborative Filtering with Generative Augmentation (CF + GAN + DA)
KDD 2019, [PDF]
2.Future Data Helps Training Modeling Future Contexts for Session-based Recommendation (Session + DA)
WWW 2020, [PDF], [Code]
3.Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer (Sequential + DA)
SIGIR 2021, [PDF], [Code]
4.Self-Knowledge Distillation with Bidirectional Chronological Augmentation of Transformer for Sequential Recommendation (Sequential + DA)
arXiv 2022, [PDF], [Code]
5.Counterfactual Data-Augmented Sequential Recommendation (Sequential + Counterfactual + DA)
SIGIR 2021, [PDF]
6.CauseRec: Counterfactual User Sequence Synthesis for Sequential Recommendation (Sequential + Counterfactual + DA)
SIGIR 2021, [PDF]
7.Explicit Counterfactual Data Augmentation for Recommendation (Sequential + Counterfactual + DA)
WSDM 2023
8.Effective and Efficient Training for Sequential Recommendation using Recency Sampling (Sequential + DA)
RecSys 2022, [PDF]
9.Data Augmentation Strategies for Improving Sequential Recommender Systems (Sequential + DA)
arXiv 2022, [PDF], [Code]
10.Learning to Augment for Casual User Rec

该文整理了85篇关于推荐系统中对比学习和数据增强的最新论文,涵盖多个顶级会议和期刊,包括对这两种方法在序列推荐、图推荐和其他推荐任务中的应用。论文涉及自监督学习、生成增强、对抗性训练、因果推理等多个方面,展示了这些技术如何提升推荐系统的性能。
最低0.47元/天 解锁文章

2340

被折叠的 条评论
为什么被折叠?



