2.1 引言
1)伦理:伦理是建立在是非观念上的行为准则。
2)数据处理伦理:数据处理伦理指如何以符合伦理准则的方式获取、存储、管理、使用和销毁数据。
3)数据处理伦理几个核心概念:
- 对人的影响
- 滥用的可能
- 数据的经济价值
从业务和技术角度来看,数据管理专业人员都要有管理数据的伦理责任,以降低数据可能被歪曲、滥用或误解的风险。
4)语境关系图
2.2 业务驱动因素
组织构建数据处理伦理准则的主要原因是为了降低所负责的数据被员工、客户、合作伙伴滥用的风险。保护数据不受犯罪分子侵犯也是一项伦理责任,即保护数据不受黑客攻击和潜在的数据泄露。
2.3 基本概念
2.3.1 数据伦理准则
1)尊重他人:尊重个人尊严和自主权
是否考虑过设计信息系统时是采用强制模式还是用户自由选择的模式?是否考虑过处理数据对精神患者或残疾人有何影响?是否考虑过应对访问和利用数据负责?是否考虑过应基于用户知情及授权情况下处理数据?
2)行善原则:第一,不伤害;第二,将利益最大化、伤害最小化
处理过程的设计方式是基于零和博弈,还是双赢的理念?数据处理是否具有不必要的侵入性,是否存在风险较低的方式来满足业务需求?有问题的数据处理是否缺乏透明度,可能会隐藏对人们造成的伤害?
3)公正原则:待人公平和公正
人们或某一群体是否受到不平等对待?流程或算法结果是否对部分人带来了利益或分配不均的情况?机器学习训练所用的数据集是否使用了无意中加强文化偏见的数据?
4)尊重法律和公众利益
数据处理伦理必须遵循的四大支柱:
- 面向未来的数据处理条例、尊重隐私权和数据保护权利。
- 确定个人信息处理的责任人。
- 数据处理产品及服务设计及工程过程中的隐私意识。
- 增加个人的自主权。
2.3.2 数据隐私法背后的原则
1)GDPR准则(欧盟通用数据保护条例)
- 公平、合法、透明:数据主题中的个人数据应以合法、公平和透明的方式进行处理。
- 目的限制:必须按照指定、明确、合法的目标去采集个人数据。
- 数据最小化:采集的个人数据必须足够相关,并且仅限于与处理目的相关的必要信息。
- 准确性:个人数据必须准确,有必要保持最新的数据。
- 存储限制:数据必须以可以识别的数据主体(个人)的形式保存,保存时间不得超过处理个人数据所需的时间。
- 诚信和保密:必须确保个人数据得到安全妥善的处理,包括使用适当技术和组织方法防止数据被擅自或非法处理,防止意外丢失、被破坏或摧毁等。
- 问责制度:控制数据的人员应负责并能够证明符合上述这些原则。
2)PIPEDA(个人信息保护及电子文件法)
- 问责制度:组织有责任对其控制下个人信息负责,并设立专职人员去保证组织遵守这些准则
- 目的明确:组织在收集个人信息之时或之前必须明确采集的目的
- 授权:组织去采集、使用或披露个人信息时需征求当事人的知情和同意,但不适用的情况除外。
- 收集、使用、披露和留存限制:个人信息必须限定于为该组织确定的目标所必需的采集。信息采集应当采取公平、合法的方式。除经个人同意或法律要求外,不得将个人信息用于采集个人信息目的以外的其他用途或披露个人信息。个人信息仅在为实现这些目的所需的时间内保留
- 准确性:个人信息必须准确、完整、最新
- 保障措施:采集的个人信息必须受到与信息敏感程度相匹配的安全保障措施的保护
- 透明度:组织必须向个人提供有关其个人信息的信息管理制度和实践相关的具体信息
- 个人访问:个人应被告知其个人信息的存在、使用和披露情况,并有权访问这些信息。个人应当能够对信息的准确性和完整性提出质疑,并酌情予以修正
- 合规挑战:个人应能够针对以上原则的遵从性,向负责组织或个人发起合规性质疑
3)美国联邦贸易委员会(FTC)公平信息处理原则
- 发布/告知:数据采集者在采集消费者个人信息之前,必须披露对这些信息的用途和过程
- 选择/许可:个人信息是否采集或如何采集,以及会被用于超出采集目标之外的情况,都必须征求被采集者的意见
- 访问/参与:消费者可以查询,并且质疑其个人数据的准确性和完整性
- 诚信/安全:数据采集者需要采取合理的步骤,以确保从消费者采集的信息是准确的,并且防止未经授权使用
- 执行/纠正:使用可靠机制对不遵守这些公平信息实践的行为实施制裁
4)公平信息实践其他重点包括:
- 简化消费者选择,减轻消费者负担。
- 在信息生命周期中建议始终保持全面的数据管理程序
- 为消费者提供不要跟踪选项(Do Not Track Option)
- 要求明确肯定的同意
- 关注大型平台提供商的数据采集能力、透明度以及明确的隐私声明和制度
- 个人对数据的访问。
- 提高消费者对个人隐私保护意识。
- 设计时考虑保护隐私。