这里写目录标题
概念
在计算机视觉中,显著图(Saliency map)是一种突出人们眼睛首先关注的区域的图像。显著图的目标是反映像素对人类视觉系统的重要程度。
显著性是图像的突出部分,我们的大脑会特别关注这个部分。例如,大家有没有曾经在看广告的时候被一些特别的内容吸引,为此我们还特意停下来多看了一会儿?这就是广告的显著性,即使让我们可以一眼看到广告,也会被他吸引。
例如,在这个图像中,一个人首先看房子和灯塔,所以在显著图上它们应该突出显示。
在人工智能和计算机视觉中设计的显著图通常与由生物或自然视觉构建的实际显著图不同。
应用
显著图在各种不同的问题中都有应用。
一些通用应用:
- 图像和视频压缩:人眼只关注画面中感兴趣的一小块区域。因此,没有必要以统一的质量压缩整个帧。根据作者的说法,使用显著图可以减少具有相同视觉感知的视频的最终尺寸。
- 图像和视频质量评估:图像或视频质量指标的主要任务是与用户意见高度相关。显著区域的差异更加重要,因此对质量得分的贡献更大。
- 图像裁剪:它旨在通过扩大或缩小非信息区域来调整图像的大小。因此,重定向算法依赖于显著图的可用性,这些显著图可以准确估计所有显著图像细节。
- 对象检测和识别:我们可以将其用于图像中最有可能包含对象的最显著区域,而不是将计算复杂的算法应用于整个图像。
- 图像分割:
显著性估计可以看作是图像分割的一个实例。在计算机视觉中,图像分割是将数字图像划分为多个片段(像素集,也称为超像素)的过程。分割的目标是将图像的表示简化和/或更改为更有意义且更易于分析的东西。图像分割通常用于定位图像中的对象和边界(直线、曲线等)。更准确地说,图像分割是为图像中的每个像素分配标签的过程,使得具有相同标签的像素共享某些特征。
算法
传统算法
在 OpenCV 中实现了三种形式的经典显著性估计算法:
- 静态显著性:依靠图像特征和统计数据来定位图像的感兴趣区域。
- 运动显著性:依赖于视频中的运动,由光流检测。移动的物体被认为是突出的。