深度图(Depth Map)

本文介绍了深度图的基本概念,探讨了深度图的获取方式,如激光雷达、结构光和双目或多目相机,以及深度学习在深度估计中的应用。深度图在三维重建、自动驾驶、医学成像等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度图

深度图是什么

深度图(depth map)是一种灰度图像,其中每个像素点距离相机的距离信息。它是计算机视觉中常用的一种图像表示方式,用于描述场景的三维结构。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

深度图的获取方式

深度图的发展历史可以追溯到20世纪60年代。最初,深度图像是通过手工标注或利用先验知识推测出来的。随着计算机视觉技术的发展,深度图像的获取方法和算法也不断进步和完善。

深度图的获取方式有多种,常见的方法包括:

  1. 通过激光雷达或结构光等传感器获取深度信息,再将其转换为深度图像。

  2. 利用双目或多目相机的视差信息计算深度,再将其转换为深度图像。

  3. 利用先验知识或模型对图像进行分析,推测出每个像素点的深度信息。

激光雷达或结构光等传感器的方法

激光雷达或结构光等传感器获得的深度,可以得到绝对深度,因为他们的数据是测出来的,根据TOF计算得到的真实距离。所以在连续的图片序列中,由于深度是绝对的,他们具有一样的参考价值。

激光雷达

这种方法也被叫做TOF方法(Time Of Fly)即通过激光/雷达波发出和收到的时间差,结合光速,计算信号在这段时间所走过的路程,所以也就能获得不同物体距离激光发射点的距离了。

RGB-D相机

另外,除了雷达之外激光雷达相机也可以实现类似的效果,也可以利用激光雷达和结构光的配合,获得更加精准的深度数值

双目或多目相机的视差信息计算深度

我们可以模拟人眼的工作方式,使用两个摄像机,这种方法被称为立体视觉。

在下图中,p是空间一点,z是其深度,Ol和Or是左右两个相机,对应上述的O和O’。f是相机焦距。

根据相似三角形的公式:

相机的焦距,两相机的距离都是已知的,这样我们可以轻松地知道一个点的深度与x和x’的查成反比,从而得到图中所有点的深度图。

OpenCV也提供了相关的计算函数:

这样我们就能够大致计算出图中的深度了:

可能你会想问,上面的深度图片都是彩色的,为什么这张变成和黑白的,但实际上
这才是深度图本来的样子
我们通过OpenCV的apploycolor map函数对灰度图进行了颜色的映射,让结果看起来更加的生动和fancy。

下面给一个示例来说明applyColorMap的作用:

def ColorMap_demo():
    img = cv.imread("lena.jpg",cv.IMREAD_GRAYSCALE)
    if img.shape[0]==0:
        print("load image fail!")
        return
    windowname="applyColorMap"
    cv.namedWindow(windowname,cv.WINDOW_AUTOSIZE)
    pos=0
    cv.createTrackbar("Type",windowname,pos,22,callback_trackbar)
    while True:
        pos = cv.getTrackbarPos("Type",windowname)
        imgdst = np.copy(img)
        if pos != 0 :
            imgdst = cv.applyColorMap(img,pos-1)
        cv.imshow(windowname,imgdst)
        if cv.waitKey(10) == 27:
            break
if __name__ == "__main__":
    ColorMap_demo()


通过双目或多目相机获得的深度,也是绝对的深度,因为其原理是通过固定位置相机的相似三角形计算距离的。所以在连续的图片序列中,由于深度是绝对的,他们具有一样的参考价值。

采用深度学习模型估计深度

典型的采用深度学习的方式来估计RGB图像的深度的方法如下所示:

  1. 从RGBD相机的输出结果中,获取深度分量,得到真实的深度图。
  2. 仅输入RGB图,让模型生成对应的深度估计图
  3. 对模型的深度估计图和实际的深度图求差,获取估计的误差
  4. 深度学习网络的优化目标即为减小估计深度与实际深度的误差
  5. 在经过大量的训练之后,就能获得一个可以根据RGB图估计深度图的网络了

这里主要是指用模型估计图片中的物体深度,这样的方式获得的结果,在一张图片中不同的像素点之间的相对深度差,但是在在连续的图片序列中,两帧之间的深度估计结果没有必然的联系。例如,假设上面的面具是一个视频序列,在第一帧面具左眼的深度为100,面具右眼的深度估计为110.第二帧中,面具的左眼的深度可能是1000,而右眼的深度可能为1010。

可以发现,两帧之间同一区域的深度,在采用深度学习模型估计的时候,其绝对值结果是没有参考价值的:例如同样都是左眼,在第一帧中的深度和第二帧的深度估计数值甚至不在一个量级。

但是一帧内的不同位置,其相对深度是具有参考性的:例如不论在哪一帧,左眼和右眼的深度差始终为10.

这也正是由于深度学习模型训练的时候的策略所导致的,单目预测深度基本都是这种的拟合回归,本身数学上就是一个病态问题,不可能从单张2D的图片恢复出三维的信息。因为本身就是缺少信息的。

深度图的应用场景

  1. 三维重建:深度图可用于创建三维模型,例如建筑物、雕塑、人体等。

  2. 虚拟现实:深度图可用于创建虚拟现实环境,例如游戏、培训模拟器等。

  3. 自动驾驶:深度图可用于帮助自动驾驶汽车识别道路、障碍物和其他车辆。

  4. 医学成像:深度图可用于医学成像,例如X射线、CT扫描和MRI。

  5. 图层分隔:判断图片素材中物体的远近关系,实现图层前后信息的获取。

这里可以举一个自动驾驶的例子,即通过激光雷达获取周围的环境信息,用来感知各种物体与车体的距离。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

扩展阅读

显著图(Saliency Map)

获取场景中各点相对于摄象机的距离是计算机视觉系统的重要任务之一.场景中各点相对于摄象机的距离可以用深度图(Depth Map)来表示,即深度图中的每一个像素值表示场景中某一点与摄像机之间的距离.机器视觉系统获取场景深度图技术可分为被动测距传感和主动深度传感两大类.被动测距传感是指视觉系统接收来自场景发射或反射的光能量,形成有关场景光能量分布函数,即灰度图像,然后在这些图像的基础上恢复场景的深度信息.最一般的方法是使用两个相隔一定距离的摄像机同时获取场景图像来生成深度图.与此方法相类似的另一种方法是一个摄象机在不同空间位置上获取两幅或两幅以上图像,通过多幅图像的灰度信息和成象几何来生成深度图.深度信息还可以使用灰度图像的明暗特征、纹理特征、运动特征间接地估算.主动测距传感是指视觉系统首先向场景发射能量,然后接收场景对所发射能量的反射能量.主动测距传感系统也称为测距成象系统(Rangefinder).雷达测距系统和三角测距系统是两种最常用的两种主动测距传感系统.因此,主动测距传感和被动测距传感的主要区别在于视觉系统是否是通过增收自身发射的能量来测距。另外,我们还接触过两个概念:主动视觉和被动视觉。主动视觉是一种理论框架,与主动测距传感完全是两回事。主动视觉主要是研究通过主动地控制摄象机位置、方向、焦距、缩放、光圈、聚散度等参数,或广义地说,通过视觉和行为的结合来获得稳定的、实时的感知。我们将在最后一节介绍主动视觉。
Depthmap是一种用于测量物体深度的技术。它可以通过使用特殊的相机或传感器来捕获场景中物体的深度信息,并将其转化为图像或数据。Depthmap下载指的是从互联网上获取Depthmap软件或工具的过程。 Depthmap有许多应用领域,包括计算机视觉、虚拟现实、增强现实和机器人导航等。在计算机视觉中,Depthmap可以帮助实现物体识别、姿态估计和三维重建等任务。在虚拟现实和增强现实中,Depthmap可以用于场景重建和虚拟物体与真实物体的交互。对于机器人导航来说,Depthmap可以帮助机器人判断周围环境的深度信息,并做出相应的决策。 要下载Depthmap,可以通过各种渠道进行。其中最常见的渠道是互联网上的软件下载网站或应用商店。一般来说,可以在网站或应用商店上搜索相关的关键词(比如“Depthmap软件”或“Depthmap工具”),然后浏览搜索结果,找到合适的软件进行下载。 在下载Depthmap之前,我们需要确保所选软件与我们的设备兼容,并且具备我们所需要的功能。此外,我们还应该注意软件的来源和安全性,尽量选择官方或可信的网站或应用商店进行下载,以避免下载到恶意软件或病毒。 总之,通过下载Depthmap软件或工具,我们可以利用这一技术来测量场景中物体的深度信息,从而在各种应用领域中实现更多有趣和有用的功能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KingsMan666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值