系列文章目录
基础篇
01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南
02-玩转 LangChain Memory 模块:四种记忆类型详解及应用场景全覆盖
03-全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
04-玩转 LangChain:从文档加载到高效问答系统构建的全程实战
05-玩转 LangChain:深度评估问答系统的三种高效方法(示例生成、手动评估与LLM辅助评估)
06-从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!
实战篇
文章目录
前言
在人工智能技术快速发展的背景下,大语言模型(LLM)
的应用场景越来越广泛,例如自动化文本生成、智能问答系统、知识提取等。然而,如何高效地与这些大模型交互,成为开发者面临的一大挑战。LangChain
正是为解决这一问题而生的。
LangChain 是一个开源框架,旨在帮助开发者更便捷地与大语言模型(如 OpenAI 的 GPT 系列、阿里云通义千问 Qwen)进行交互。通过 LangChain,开发者可以轻松整合模型调用、Prompt 模板管理、复杂任务链条设计以及输出解析等功能,大幅提升开发效率和应用的可靠性。
LangChain 的核心模块
LangChain 由以下核心模块组成,每个模块都有其特定的功能:
-
Model(模型)
- 提供与大语言模型交互的接口,例如 OpenAI、阿里云等的 LLM。
- 开发者可以轻松配置 API 调用和模型参数。
-
Prompt(提示词)
- 提供动态提示词模板管理功能,支持变量插值、Prompt 优化。
- 适用于创建灵活且高效的模型交互任务。
-
Chains(链条)
- 用于将多个任务步骤组合成一个链条,例如多次调用模型完成复杂的推理任务。
- 支持模块化设计,便于维护和扩展。
-
Memory(记忆)
- 提供上下文记忆功能,可以让模型在多轮对话中记住用户的输入和历史对话内容。
- 适合构建长时间、多轮交互的对话系统。
-
Output Parsers(输出解析器)
- 解析模型的返回结果,例如将文本解析为 JSON 结构,便于后续处理。
- 特别适用于信息提取、分类任务等。
-
Agents(代理)
- 集成多种工具(如 API、数据库、文件系统)与模型交互,使模型能够动态调用外部资源完成复杂任务。
- 适合构建更智能化的自动化工作流。
LangChain 的应用场景
LangChain 的灵活性和模块化设计使其广泛适用于以下场景:
- 文本生成与翻译:例如生成新闻稿、调整语气风格、翻译专业文档。
- 智能问答与知识库:构建基于文档、数据库的知识问答系统。
- 信息提取与分析:从非结构化文本中提取关键信息,例如用户评论分析、商业报告解析。
- 对话系统与聊天机器人:利用记忆模块支持上下文多轮对话,实现类似 ChatGPT 的应用。
- 自动化工作流:通过 Agents 模块集成外部工具,完成复杂的任务链,例如自动处理订单或执行 API 查询。
本文主题
本篇文章聚焦于 LangChain 的核心功能模块:Model、Prompt 和 Output Parser,并通过实际代码示例,帮助理解如何使用这些模块完成与大语言模型的交互任务。
通过阅读本文,将学会:
- 如何初始化并调用 LangChain 模型。
- 如何使用 Prompt 模板提高交互效率。
- 如何通过 Output Parser 解析模型返回的复杂数据。
一、LangChain 环境搭建与初始配置
在开始构建 LangChain 应用之前,需要完成基础环境的搭建和配置。
1.1 安装依赖
在项目环境中安装必要的 Python 包:
pip install langchain langchain-community langchain_openai python-dotenv openai
这些依赖包含了 LangChain 框架、环境变量管理工具 python-dotenv
和与 OpenAI 模型交互的接口。
1.2 环境变量加载
为了保护敏感信息(如 API Key 和 API URL),建议将这些信息存储在项目根目录下的一个名为 .env
的文件中。这样可以避免将敏感信息直接暴露在代码中,同时方便环境的统一配置。
1.2.1 具体步骤
-
创建
.env
文件
在项目根目录下创建一个名为.env
的文件。注意,这个文件不需要任何扩展名。
如果使用版本控制(如 Git),记得将.env
文件添加到.gitignore
中,避免敏感信息被提交到代码仓库。 -
编写
.env
文件内容
.env
文件的内容采用键值对的形式,每行一个键值对,格式如下:
阿里云通义千问(Qwen)API 配置
ALIYUN_API_KEY=你的阿里云API密钥
ALIYUN_API_URL=你的阿里云API地址,例如:https://dashscope.aliyuncs.com/compatible-mode/v1
DeepSeek API 配置
DEEPSEEK_API_KEY=你的DeepSeek API密钥
DEEPSEEK_API_URL=你的DeepSeek API地址,例如:https://api.deepseek.com
OpenAI API 配置
OPENAI_API_KEY=你的OpenAI API密钥
OPENAI_API_URL=https://api.openai.com/v1
- 键名:
ALIYUN_API_KEY
和ALIYUN_API_URL
是阿里云 API 的密钥和访问地址;DEEPSEEK_API_KEY
和DEEPSEEK_API_URL
是DeepSeek API 的密钥和地址;OPENAI_API_KEY
和OPENAI_API_URL
是OpenAI API 的密钥和地址。 - 值:具体的密钥和 URL 需要根据实际情况替换为你自己的值。
- 在代码中加载
.env
文件
使用python-dotenv
模块加载.env
文件中的内容到 Python 程序中。示例如下:
import os
from dotenv import load_dotenv
# 加载 .env 文件中的环境变量
load_dotenv()
# 获取环境变量的值
api_key = os.getenv("ALIYUN_API_KEY")
base_url = os.getenv("ALIYUN_API_URL")
1.2.2 注意事项
.env
文件应放在项目根目录下,与主代码文件(如main.py
)处于同一级目录。这样load_dotenv()
可以自动找到.env
文件。- 在使用其他环境变量(如
DEEPSEEK_API_KEY
和DEEPSEEK_API_URL
)时,直接通过os.getenv("<变量名&