【langchain学习】使用LangChain创建具有上下文感知的问答系统

探讨如何使用LangChain库创建一个上下文感知的问答系统。这个系统能够根据用户的聊天历史,将当前问题转化为一个独立的问题,接着根据上下文提供准确的答案。

1. 导入所需模块
from operator import itemgetter
from config import llm  # 从config文件导入语言模型(llm)
from langchain_core.output_parsers import StrOutputParser  # 导入字符串输出解析器
from langchain_core.prompts import ChatPromptTemplate  # 导入聊天提示模板
from langchain_core.runnables import Runnable, RunnablePassthrough, chain  # 导入可执行单元、直通单元和链式处理功能

首先,我们导入了需要的模块。llm 是一个语言模型,StrOutputParser 是一个字符串输出解析器,ChatPromptTemplate 用于创建提示模板,RunnableRunnablePassthroughchain 则用于创建和处理可执行的链式处理流程。

2. 指令:上下文化用户问题
contextualize_instructions = """
根据聊天记录,将最新的用户问题转换为独立问题。不要回答问题,返回问题,不要做其他任何事情(没有描述性文本)
"""

这里我们定义了一段指令,告知系统根据聊天记录将用户的最新问题转化为一个独立的问题,并只返回问题本身,而不包含其他信息。

3. 创建聊天提示模板
contextualize_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_instructions),  # 系统指令
        ("placeholder", "{chat_history}"),  # 占位符,用于填充聊天历史
        ("human", "{question}"),  # 用户提出的问题
    ]
)

我们使用 ChatPromptTemplate.from_messages 创建了一个聊天提示模板,该模板结合了上下文指令、聊天历史和用户问题,用于生成系统提示。

4. 链式处理:将上下文指令与语言模型连接
contextualize_question = contextualize_prompt | llm | StrOutputParser()

在这一步,我们将聊天提示模板、语言模型以及字符串输出解析器连接起来,形成一个完整的处理链。contextualize_question 将作为处理链的一部分,用于上下文化用户问题。

5. 创建问答系统的提示模板
qa_instructions = (
    """Answer the user question given the following context:\n\n{context}."""
)

这里我们定义了问答系统的指令,系统将根据提供的上下文来回答用户的问题。

qa_prompt = ChatPromptTemplate.from_messages(
    [("system", qa_instructions), ("human", "{question}")]
)

随后,我们创建了另一个聊天提示模板 qa_prompt,它结合上下文指令和用户问题,用于生成问答提示。

6. 定义链式处理函数
@chain
def contextualize_if_needed(input_: dict) -> Runnable:
    if input_.get("chat_history"):
        return contextualize_question
    else:
        return RunnablePassthrough() | itemgetter("question")

我们定义了一个链式处理函数 contextualize_if_needed,用于根据聊天历史上下文化用户问题。如果有聊天历史存在,系统将返回上下文化问题的可执行单元;否则,直接返回用户问题。

7. 模拟数据检索器
@chain
def fake_retriever(input_: dict) -> str:
    return "Tadej Pogačar won the Tour de France in 2024."

在这个步骤中,我们定义了一个假的检索器 fake_retriever,用于模拟从数据库或API中检索数据。在本例中,它直接返回一条硬编码的信息。

8. 定义完整的处理流程
full_chain = (
    RunnablePassthrough.assign(question=contextualize_if_needed)
    .assign(context=fake_retriever)
    | qa_prompt
    | llm
    | StrOutputParser()
)

full_chain 是整个系统的核心。它将用户问题和聊天历史传递给 contextualize_if_needed 进行上下文处理,然后通过 fake_retriever 获取相关的上下文信息,接着生成问答提示,并使用语言模型生成答案,最后解析并输出结果。

9. 调用处理流程
res = full_chain.invoke(
    {
        "question": "what about Tour de France in 2024",
        "chat_history": [
            ("human", "Who won the Tour de France in 2023?"),
            ("ai", "Jonas Vingegaard."),
        ],
    }
)

在这里,我们调用了 full_chain,传入用户当前的问题和聊天历史。这个链式处理流程会根据历史记录将问题转化为一个独立问题,并返回答案。

10. 输出结果
print(res)

最后,我们将处理结果输出到控制台。

Tadej Pogačar.

Process finished with exit code 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值