系列文章目录
基础篇
01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南
02-玩转 LangChain Memory 模块:四种记忆类型详解及应用场景全覆盖
03-全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
04-玩转 LangChain:从文档加载到高效问答系统构建的全程实战
05-玩转 LangChain:深度评估问答系统的三种高效方法(示例生成、手动评估与LLM辅助评估)
06-从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!
实战篇
文章目录
前言
在近年来,LangChain作为一款强大的开源框架,逐渐成为构建基于大型语言模型(LLM)应用的首选工具。它不仅提供了简洁且灵活的API来进行模型的交互,还包括了众多功能模块,支持高效构建多种应用,如智能问答系统、自动化工作流等。LangChain的模块化设计使得开发者能够根据自己的需求灵活组合不同的功能,从而快速实现复杂的业务场景。
LangChain 的核心模块
LangChain 由以下核心模块组成,每个模块都有其特定的功能:
- Model(模型)
- 提供与大语言模型交互的接口,例如 OpenAI、阿里云等的 LLM。
- 开发者可以轻松配置 API 调用和模型参数。
- Prompt(提示词)
- 提供动态提示词模板管理功能,支持变量插值、Prompt 优化。
- 适用于创建灵活且高效的模型交互任务。
- Chains(链条)
- 用于将多个任务步骤组合成一个链条,例如多次调用模型完成复杂的推理任务。
- 支持模块化设计,便于维护和扩展。
- Memory(记忆)
- 提供上下文记忆功能,可以让模型在多轮对话中记住用户的输入和历史对话内容。
- 适合构建长时间、多轮交互的对话系统。
- Output Parsers(输出解析器)
- 解析模型的返回结果,例如将文本解析为 JSON 结构,便于后续处理。
- 特别适用于信息提取、分类任务等。
- Agents(代理)
- 集成多种工具(如 API、数据库、文件系统)与模型交互,使模型能够动态调用外部资源完成复杂任务。
- 适合构建更智能化的自动化工作流。
LangChain 的应用场景
LangChain 的灵活性和模块化设计使其广泛适用于以下场景:
- 文本生成与翻译:例如生成新闻稿、调整语气风格、翻译专业文档。
- 智能问答与知识库:构建基于文档、数据库的知识问答系统。
- 信息提取与分析:从非结构化文本中提取关键信息,例如用户评论分析、商业报告解析。
- 对话系统与聊天机器人:利用记忆模块支持上下文多轮对话,实现类似 ChatGPT 的应用。
- 自动化工作流:通过 Agents 模块集成外部工具,完成复杂的任务链,例如自动处理订单或执行 API 查询。
本文主题
本文将探讨如何利用 LangChain 框架中的 Agents(代理)
功能,构建能够自动调用外部工具和资源的智能体。特别地,我们将重点介绍如何使用 LangChain 提供的内建工具,如 DuckDuckGo 搜索和 Wikipedia 进行动态信息查询,同时讲解如何定义和集成自定义工具,扩展智能体的功能以适应更加复杂的任务。
- 使用内建工具:介绍如何利用 DuckDuckGo 搜索和 Wikipedia 进行信息查询。
- 定义自定义工具:展示如何创建并集成自定义工具,以扩展智能体的功能。
通过这些内容,读者将学会如何通过 LangChain 构建更加智能化的自动化工作流。
一、LangChain 环境搭建与初始配置
在开始构建 LangChain 应用之前,需要完成基础环境的搭建和配置。
1.1 安装依赖
在项目环境中安装必要的 Python 包:
pip install langchain langchain-community langchain_openai python-dotenv openai docarray langchain-huggingface numexpr wikipedia
这些依赖包含了 LangChain 框架、环境变量管理工具 python-dotenv
和与 OpenAI 模型交互的接口。
1.2 环境变量加载
为了保护敏感信息(如 API Key 和 API URL),建议将这些信息存储在项目根目录下的一个名为 .env
的文件中。这样可以避免将敏感信息直接暴露在代码中,同时方便环境的统一配置。
1.2.1 具体步骤
-
创建
.env
文件
在项目根目录下创建一个名为.env
的文件。注意,这个文件不需要任何扩展名。
如果使用版本控制(如 Git),记得将.env
文件添加到.gitignore
中,避免敏感信息被提交到代码仓库。 -
编写
.env
文件内容
.env
文件的内容采用键值对的形式,每行一个键值对,格式如下:
阿里云通义千问(Qwen)API 配置
ALIYUN_API_KEY=你的阿里云API密钥
ALIYUN_API_URL=你的阿里云API地址,例如:https://dashscope.aliyuncs.com/compatible-mode/v1
DeepSeek API 配置
DEEPSEEK_API_KEY=你的DeepSeek API密钥
DEEPSEEK_API_URL=你的DeepSeek API地址,例如:https://api.deepseek.com
OpenAI API 配置
OPENAI_API_KEY=你的OpenAI API密钥
OPENAI_API_URL=https://api.openai.com/v1
- 键名:
ALIYUN_API_KEY
和ALIYUN_API_URL
是阿里云 API 的密钥和访问地址;DEEPSEEK_API_KEY
和DEEPSEEK_API_URL
是DeepSeek API 的密钥和地址;OPENAI_API_KEY
和OPENAI_API_URL
是OpenAI API 的密钥和地址。 - 值:具体的密钥和 URL 需要根据实际情况替换为你自己的值。
- 在代码中加载
.env
文件
使用python-dotenv
模块加载.env
文件中的内容到 Python 程序中。示例如下:
import os
from dotenv import load_dotenv
# 加载 .env 文件中的环境变量
load_dotenv()
# 获取环境变量的值
api_key = os.getenv("ALIYUN_API_KEY")
base_url = os.getenv("ALIYUN_API_URL")
1.2.2 注意事项
.env
文件应放在项目根目录下,与主代码文件(如main.py
)处于同一级目录。这样load_dotenv()
可以自动找到.env
文件。- 在使用其他环境变量(如
DEEPSEEK_API_KEY
和DEEPSEEK_API_URL
)时,直接通过os.getenv("<变量名>")
访问即可。 - 确保
.env
文件已正确加载。如果程序中获取不到变量值,请检查文件路径和格式是否正确。
通过这种方式,可以在保护敏感信息的同时,方便多环境配置和管理。
1.3 初始化模型客户端
使用 LangChain 提供的 ChatOpenAI
,连接阿里云通义千问模型(Qwen):
from langchain_openai import ChatOpenAI # type: ignore
llm = ChatOpenAI(
openai_api_key=api_key,
model_name="qwen-plus",
base_url=base_url
)
至此,环境已经完成初始化,可以开始与模型交互。
二、使用 LangChain 内建工具
LangChain 提供了多种内建工具,这些工具能够帮助开发者实现模型与外部资源的互动,使得智能体能够完成更多复杂的任务。本文将重点介绍如何加载并使用其中的两个常用工具——DuckDuckGo 搜索和 Wikipedia,以便智能体能够获取实时的互联网信息。
2.1 加载内建工具
在使用内建工具之前,我们需要先加载所需的工具。LangChain 提供了 load_tools
函数,方便加载 DuckDuckGo 搜索和 Wikipedia 工具。
import os
from dotenv import load_dotenv # type: ignore
from langchain_openai import ChatOpenAI # type: ignore
from langchain.agents import load_tools, initialize_agent
# 加载 .env 文件中的环境变量
load_dotenv()
# 从环境变量中获取 API Key 和 Base URL
api_key = os.getenv("DEEPSEEK_API_KEY")
base_url = os.getenv("DEEPSEEK_API_URL")
# 初始化 ChatOpenAI 客户端
llm = ChatOpenAI(
openai_api_key=api_key, # 必须明确设置 api_key
model_name="deepseek-chat", # 使用 deepseek-chat
base_url=base_url, # 设置 Base URL
)
tools = load_tools(["llm-math", "wikipedia"], llm=llm)
在上述代码中,我们加载了 llm-math
和 wikipedia
工具。llm-math
用于数学计算,wikipedia
则用于从 Wikipedia 获取信息。加载这些工具后,智能体可以通过它们来解答不同类型的问题。
2.2 初始化智能体
一旦工具加载完毕,我们就可以初始化智能体。通过 initialize_agent
函数,我们可以将加载的工具与语言模型(LLM)结合,从而使智能体能够动态调用外部工具来执行任务。
from langchain.agents import AgentType
# 初始化智能体,将工具和 LLM 传入
agent = initialize_agent(
tools,
llm,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, # 使用零样本反应描述代理
handle_parsing_errors=True, # 处理解析错误
verbose=True # 打印详细的执行过程
)
2.3 使用智能体执行任务
智能体初始化后,我们可以开始让它执行任务。例如,智能体可以解答数学问题,或者查询 Wikipedia 获取关于某个主题的信息。下面是一个简单的数学问题示例:
# 询问智能体 25% 的 300 等于多少
response = agent("What is the 25% of 300?")
print(response)
2.3.1 处理数学问题
通过 llm-math
工具,智能体将计算 25% 的 300,并返回结果。执行后的输出为:
Final Answer: 75.0
2.3.2 使用 Wikipedia 查找信息
智能体也能够使用 wikipedia
工具来查询知识库中的信息。例如,询问智能体有关 Tom M. Mitchell 的书籍,它会自动访问 Wikipedia 查找相关信息并返回答案:
question = "Tom M. Mitchell is an American computer scientist what book did he write?"
result = agent(question)
print(result)
返回的结果将是:
Final Answer: Machine Learning
2.4 观察执行过程
LangChain 提供了调试模式,可以查看智能体的执行过程,帮助开发者了解每个步骤的详细信息。通过调试模式,可以清晰地看到智能体在执行任务时如何选择工具、执行操作并得出结果。
import langchain
langchain.debug = True # 开启调试模式
# 运行任务
response = agent("What is the 25% of 300?")
print(response)
langchain.debug = False # 关闭调试模式
三、定义和使用自定义工具
除了 LangChain 提供的内建工具外,开发者还可以根据自己的需求定义并集成自定义工具。通过自定义工具,智能体可以执行更为专门化的任务,从而适应更加复杂的业务场景。本文将展示如何定义一个简单的工具,例如返回当前日期的工具,并将其集成到智能体中。
3.1 安装依赖并导入库
首先,我们需要确保所需的依赖已安装,并导入相关库。为了获取当前日期,我们将使用 Python 内置的 datetime
模块。接着,使用 LangChain 的 @tool
装饰器来定义自定义工具。
from langchain.agents import tool
from datetime import date
3.2 定义自定义工具
在 LangChain 中,自定义工具通过装饰器 @tool
定义,工具函数的输入和输出可以根据需求进行定制。下面我们定义一个简单的工具,返回今天的日期:
@tool
def time(text: str) -> str:
"""返回今天的日期,用于与日期相关的任务"""
return str(date.today())
此 time
工具的功能非常简单:当调用时,它将返回当前日期。它的输入参数 text
在本例中并不会实际使用,但保留该参数是为了保持工具接口的统一性。
3.3 集成自定义工具到智能体中
在定义好自定义工具后,我们可以将其集成到智能体中。将自定义工具与其他内建工具一起加载,并初始化智能体,便于它动态执行任务。
from langchain.agents import initialize_agent
from langchain.chat_models import ChatOpenAI
# 初始化 ChatOpenAI 客户端
llm = ChatOpenAI(
openai_api_key=api_key, # 必须明确设置 api_key
model_name="deepseek-chat", # 使用 deepseek-chat
base_url=base_url, # 设置 Base URL
)
# 加载内建工具和自定义工具
tools = load_tools(["llm-math", "wikipedia"], llm=llm)
tools.append(time) # 将自定义的 time 工具添加到工具列表中
# 初始化智能体
agent = initialize_agent(
tools,
llm,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
handle_parsing_errors=True,
verbose=True
)
3.4 使用智能体执行任务
智能体现在已经具备了调用内建工具和自定义工具的能力。我们可以让智能体执行查询任务并使用自定义工具。例如,我们可以询问智能体今天的日期:
result = agent("What's the date today?")
print(result)
返回结果会是:
Final Answer: Today's date is February 4, 2025.
3.5 错误处理与调试
在实际应用中,智能体可能会遇到错误。为了确保应用的健壮性,我们可以加入错误处理机制。例如,如果某个工具无法正确访问或执行时,智能体会捕获异常并返回相应的错误信息。
try:
result = agent("What's the date today?")
except Exception as e:
print(f"Exception occurred: {e}")
四、总结
本篇文章深入探讨了 LangChain 框架中 Agents(代理) 模块的使用方法,详细介绍了如何加载内建工具、初始化智能体,以及如何自定义工具以扩展智能体的功能。以下是核心要点总结:
-
LangChain Agents 介绍
- Agents 允许 LLM 结合外部工具,实现更智能的自动化工作流。
- 适用于动态查询、数据处理和多步骤推理等任务。
-
使用 LangChain 内建工具
- 通过
load_tools()
轻松加载wikipedia
和llm-math
等工具,让智能体具备实时信息查询和数学计算能力。 initialize_agent()
结合 LLM 和工具,使智能体可以自动调用合适的工具执行任务。
- 通过
-
执行智能体任务
- 通过 LangChain Agents 解决数学计算、Wikipedia 查询等任务,展示了智能体如何动态选择合适的工具来完成不同类型的请求。
- 开启
langchain.debug = True
调试模式,观察智能体执行任务的每个细节,方便优化和调试。
-
定义和集成自定义工具
- 使用
@tool
装饰器创建自定义工具,例如获取当前日期的time()
方法,并成功集成到智能体中。 - 自定义工具的引入,使得智能体可以执行更多定制化任务,不局限于 LangChain 预置的工具集。
- 使用
-
错误处理与优化
- 通过
try-except
结构捕获可能的异常,提高智能体的稳定性。 - 结合
verbose=True
参数观察智能体执行过程,帮助优化工具调用逻辑。
- 通过
LangChain 的 Agents 让 LLM 具备了超越单纯文本对话的能力,使其可以动态选择和调用外部工具,执行更复杂的任务。通过内建工具和自定义工具的结合,开发者可以根据自己的业务需求构建智能化应用,如自动化数据分析、智能搜索、信息提取等。未来,随着 LangChain 生态的发展,可以期待更强大的工具集成能力,让 AI 代理真正成为生产力工具的核心组件。