从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!

系列文章目录

基础篇

01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南
02-玩转 LangChain Memory 模块:四种记忆类型详解及应用场景全覆盖
03-全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
04-玩转 LangChain:从文档加载到高效问答系统构建的全程实战
05-玩转 LangChain:深度评估问答系统的三种高效方法(示例生成、手动评估与LLM辅助评估)
06-从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!

实战篇



前言

在近年来,LangChain作为一款强大的开源框架,逐渐成为构建基于大型语言模型(LLM)应用的首选工具。它不仅提供了简洁且灵活的API来进行模型的交互,还包括了众多功能模块,支持高效构建多种应用,如智能问答系统、自动化工作流等。LangChain的模块化设计使得开发者能够根据自己的需求灵活组合不同的功能,从而快速实现复杂的业务场景。

LangChain 的核心模块

LangChain 由以下核心模块组成,每个模块都有其特定的功能:

  1. Model(模型)
    • 提供与大语言模型交互的接口,例如 OpenAI、阿里云等的 LLM。
    • 开发者可以轻松配置 API 调用和模型参数。
  2. Prompt(提示词)
    • 提供动态提示词模板管理功能,支持变量插值、Prompt 优化。
    • 适用于创建灵活且高效的模型交互任务。
  3. Chains(链条)
    • 用于将多个任务步骤组合成一个链条,例如多次调用模型完成复杂的推理任务。
    • 支持模块化设计,便于维护和扩展。
  4. Memory(记忆)
    • 提供上下文记忆功能,可以让模型在多轮对话中记住用户的输入和历史对话内容。
    • 适合构建长时间、多轮交互的对话系统。
  5. Output Parsers(输出解析器)
    • 解析模型的返回结果,例如将文本解析为 JSON 结构,便于后续处理。
    • 特别适用于信息提取、分类任务等。
  6. Agents(代理)
    • 集成多种工具(如 API、数据库、文件系统)与模型交互,使模型能够动态调用外部资源完成复杂任务。
    • 适合构建更智能化的自动化工作流。

LangChain 的应用场景

LangChain 的灵活性和模块化设计使其广泛适用于以下场景:

  • 文本生成与翻译:例如生成新闻稿、调整语气风格、翻译专业文档。
  • 智能问答与知识库:构建基于文档、数据库的知识问答系统。
  • 信息提取与分析:从非结构化文本中提取关键信息,例如用户评论分析、商业报告解析。
  • 对话系统与聊天机器人:利用记忆模块支持上下文多轮对话,实现类似 ChatGPT 的应用。
  • 自动化工作流:通过 Agents 模块集成外部工具,完成复杂的任务链,例如自动处理订单或执行 API 查询。

本文主题

本文将探讨如何利用 LangChain 框架中的 Agents(代理) 功能,构建能够自动调用外部工具和资源的智能体。特别地,我们将重点介绍如何使用 LangChain 提供的内建工具,如 DuckDuckGo 搜索和 Wikipedia 进行动态信息查询,同时讲解如何定义和集成自定义工具,扩展智能体的功能以适应更加复杂的任务。

  • 使用内建工具:介绍如何利用 DuckDuckGo 搜索和 Wikipedia 进行信息查询。
  • 定义自定义工具:展示如何创建并集成自定义工具,以扩展智能体的功能。

通过这些内容,读者将学会如何通过 LangChain 构建更加智能化的自动化工作流。


一、LangChain 环境搭建与初始配置

在开始构建 LangChain 应用之前,需要完成基础环境的搭建和配置。

1.1 安装依赖

在项目环境中安装必要的 Python 包:

pip install langchain langchain-community langchain_openai python-dotenv openai docarray langchain-huggingface numexpr wikipedia

这些依赖包含了 LangChain 框架、环境变量管理工具 python-dotenv 和与 OpenAI 模型交互的接口。

1.2 环境变量加载

为了保护敏感信息(如 API Key 和 API URL),建议将这些信息存储在项目根目录下的一个名为 .env 的文件中。这样可以避免将敏感信息直接暴露在代码中,同时方便环境的统一配置。

1.2.1 具体步骤

  1. 创建 .env 文件
    在项目根目录下创建一个名为 .env 的文件。注意,这个文件不需要任何扩展名。
    如果使用版本控制(如 Git),记得将 .env 文件添加到 .gitignore 中,避免敏感信息被提交到代码仓库。

  2. 编写 .env 文件内容
    .env 文件的内容采用键值对的形式,每行一个键值对,格式如下:

阿里云通义千问(Qwen)API 配置
ALIYUN_API_KEY=你的阿里云API密钥
ALIYUN_API_URL=你的阿里云API地址,例如:https://dashscope.aliyuncs.com/compatible-mode/v1

DeepSeek API 配置
DEEPSEEK_API_KEY=你的DeepSeek API密钥
DEEPSEEK_API_URL=你的DeepSeek API地址,例如:h
### LangChain相关的开发工具和资源 LangChain 是一种用于构建 AI 应用程序的强大框架,它提供了一系列丰富的工具和资源来支持开发者完成复杂的任务。以下是关于 LangChain 的一些重要工具及其相关内容: #### 工具概述 LangChain 提供了多种内置工具工具包,旨在简化开发过程并增强应用程序的功能[^1]。这些工具涵盖了数据处理、模型交互以及外部服务集成等多个方面。 #### 主要工具分类 1. **检索器(Retrievers)** - 该类工具主要用于从数据库或其他存储介质中提取信息。例如,向量数据库检索器可以帮助快速找到与查询最相似的内容[^2]。 2. **链式操作(Chains)** - 链式操作允许将多个步骤组合成一个连贯的工作流。这使得复杂任务能够被分解为更小的部分逐一执行,从而提高了代码的可读性和维护性[^3]。 3. **记忆模块(Memory Modules)** - 记忆模块让对话型应用具备上下文感知能力,这对于聊天机器人等场景尤为重要。通过保存历史记录,系统可以在后续响应中更好地理解用户的意图[^4]。 4. **代理(Agents)** - Agents 结合了语言模型和其他实用插件的能力,在面对未预设的任务时也能表现出良好的适应性。它们可以根据输入动态决定采取哪些行动[^5]。 #### 开发者资源推荐 为了充分利用上述提到的各项特性,建议参考以下材料深入了解: - **官方文档**: 包含详尽的技术细节说明及示例教程,适合各个层次的学习者查阅。 - **GitHub仓库**: 不仅能下载源码文件,还经常会有社区贡献的新案例分享。 - **安全指引**: 特别强调了在实际项目部署阶段需要注意的安全事项,防止潜在风险发生。 ```python from langchain import OpenAI, Wikipedia from langchain.agents import initialize_agent, Tool from langchain.tools import BaseTool class CustomSearchTool(BaseTool): name = "custom_search" description = ( "A custom search tool useful for finding information about technology." ) def _run(self, query: str) -> str: """Use the tool.""" result = Wikipedia.run(query) return f"Custom Search Result: {result}" llm = OpenAI(temperature=0) tools = [ Tool( name="Custom Search", func=Wikipedia.run, description="useful for when you need to answer questions about technology.", ), ] agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) response = agent.run("What is Python programming language?") print(response) ``` 以上是一个简单的例子展示了如何创建自定义工具并与LLM一起工作形成Agent实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴师兄大模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值