从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!

系列文章目录

基础篇

01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南
02-玩转 LangChain Memory 模块:四种记忆类型详解及应用场景全覆盖
03-全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
04-玩转 LangChain:从文档加载到高效问答系统构建的全程实战
05-玩转 LangChain:深度评估问答系统的三种高效方法(示例生成、手动评估与LLM辅助评估)
06-从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!

实战篇



前言

在近年来,LangChain作为一款强大的开源框架,逐渐成为构建基于大型语言模型(LLM)应用的首选工具。它不仅提供了简洁且灵活的API来进行模型的交互,还包括了众多功能模块,支持高效构建多种应用,如智能问答系统、自动化工作流等。LangChain的模块化设计使得开发者能够根据自己的需求灵活组合不同的功能,从而快速实现复杂的业务场景。

LangChain 的核心模块

LangChain 由以下核心模块组成,每个模块都有其特定的功能:

  1. Model(模型)
    • 提供与大语言模型交互的接口,例如 OpenAI、阿里云等的 LLM。
    • 开发者可以轻松配置 API 调用和模型参数。
  2. Prompt(提示词)
    • 提供动态提示词模板管理功能,支持变量插值、Prompt 优化。
    • 适用于创建灵活且高效的模型交互任务。
  3. Chains(链条)
    • 用于将多个任务步骤组合成一个链条,例如多次调用模型完成复杂的推理任务。
    • 支持模块化设计,便于维护和扩展。
  4. Memory(记忆)
    • 提供上下文记忆功能,可以让模型在多轮对话中记住用户的输入和历史对话内容。
    • 适合构建长时间、多轮交互的对话系统。
  5. Output Parsers(输出解析器)
    • 解析模型的返回结果,例如将文本解析为 JSON 结构,便于后续处理。
    • 特别适用于信息提取、分类任务等。
  6. Agents(代理)
    • 集成多种工具(如 API、数据库、文件系统)与模型交互,使模型能够动态调用外部资源完成复杂任务。
    • 适合构建更智能化的自动化工作流。

LangChain 的应用场景

LangChain 的灵活性和模块化设计使其广泛适用于以下场景:

  • 文本生成与翻译:例如生成新闻稿、调整语气风格、翻译专业文档。
  • 智能问答与知识库:构建基于文档、数据库的知识问答系统。
  • 信息提取与分析:从非结构化文本中提取关键信息,例如用户评论分析、商业报告解析。
  • 对话系统与聊天机器人:利用记忆模块支持上下文多轮对话,实现类似 ChatGPT 的应用。
  • 自动化工作流:通过 Agents 模块集成外部工具,完成复杂的任务链,例如自动处理订单或执行 API 查询。

本文主题

本文将探讨如何利用 LangChain 框架中的 Agents(代理) 功能,构建能够自动调用外部工具和资源的智能体。特别地,我们将重点介绍如何使用 LangChain 提供的内建工具,如 DuckDuckGo 搜索和 Wikipedia 进行动态信息查询,同时讲解如何定义和集成自定义工具,扩展智能体的功能以适应更加复杂的任务。

  • 使用内建工具:介绍如何利用 DuckDuckGo 搜索和 Wikipedia 进行信息查询。
  • 定义自定义工具:展示如何创建并集成自定义工具,以扩展智能体的功能。

通过这些内容,读者将学会如何通过 LangChain 构建更加智能化的自动化工作流。


一、LangChain 环境搭建与初始配置

在开始构建 LangChain 应用之前,需要完成基础环境的搭建和配置。

1.1 安装依赖

在项目环境中安装必要的 Python 包:

pip install langchain langchain-community langchain_openai python-dotenv openai docarray langchain-huggingface numexpr wikipedia

这些依赖包含了 LangChain 框架、环境变量管理工具 python-dotenv 和与 OpenAI 模型交互的接口。

1.2 环境变量加载

为了保护敏感信息(如 API Key 和 API URL),建议将这些信息存储在项目根目录下的一个名为 .env 的文件中。这样可以避免将敏感信息直接暴露在代码中,同时方便环境的统一配置。

1.2.1 具体步骤

  1. 创建 .env 文件
    在项目根目录下创建一个名为 .env 的文件。注意,这个文件不需要任何扩展名。
    如果使用版本控制(如 Git),记得将 .env 文件添加到 .gitignore 中,避免敏感信息被提交到代码仓库。

  2. 编写 .env 文件内容
    .env 文件的内容采用键值对的形式,每行一个键值对,格式如下:

阿里云通义千问(Qwen)API 配置
ALIYUN_API_KEY=你的阿里云API密钥
ALIYUN_API_URL=你的阿里云API地址,例如:https://dashscope.aliyuncs.com/compatible-mode/v1

DeepSeek API 配置
DEEPSEEK_API_KEY=你的DeepSeek API密钥
DEEPSEEK_API_URL=你的DeepSeek API地址,例如:https://api.deepseek.com

OpenAI API 配置
OPENAI_API_KEY=你的OpenAI API密钥
OPENAI_API_URL=https://api.openai.com/v1

  • 键名ALIYUN_API_KEYALIYUN_API_URL 是阿里云 API 的密钥和访问地址;DEEPSEEK_API_KEYDEEPSEEK_API_URL 是DeepSeek API 的密钥和地址;OPENAI_API_KEYOPENAI_API_URL 是OpenAI API 的密钥和地址。
  • :具体的密钥和 URL 需要根据实际情况替换为你自己的值。
  1. 在代码中加载 .env 文件
    使用 python-dotenv 模块加载 .env 文件中的内容到 Python 程序中。示例如下:
   import os
   from dotenv import load_dotenv

   # 加载 .env 文件中的环境变量
   load_dotenv()

   # 获取环境变量的值
   api_key = os.getenv("ALIYUN_API_KEY")
   base_url = os.getenv("ALIYUN_API_URL")

1.2.2 注意事项

  • .env 文件应放在项目根目录下,与主代码文件(如 main.py)处于同一级目录。这样 load_dotenv() 可以自动找到 .env 文件。
  • 在使用其他环境变量(如 DEEPSEEK_API_KEYDEEPSEEK_API_URL)时,直接通过 os.getenv("<变量名>") 访问即可。
  • 确保 .env 文件已正确加载。如果程序中获取不到变量值,请检查文件路径和格式是否正确。

通过这种方式,可以在保护敏感信息的同时,方便多环境配置和管理。

1.3 初始化模型客户端

使用 LangChain 提供的 ChatOpenAI,连接阿里云通义千问模型(Qwen):

from langchain_openai import ChatOpenAI # type: ignore

llm = ChatOpenAI(
    openai_api_key=api_key,
    model_name="qwen-plus",
    base_url=base_url
)

至此,环境已经完成初始化,可以开始与模型交互。


二、使用 LangChain 内建工具

LangChain 提供了多种内建工具,这些工具能够帮助开发者实现模型与外部资源的互动,使得智能体能够完成更多复杂的任务。本文将重点介绍如何加载并使用其中的两个常用工具——DuckDuckGo 搜索和 Wikipedia,以便智能体能够获取实时的互联网信息。

2.1 加载内建工具

在使用内建工具之前,我们需要先加载所需的工具。LangChain 提供了 load_tools 函数,方便加载 DuckDuckGo 搜索和 Wikipedia 工具。

import os
from dotenv import load_dotenv # type: ignore
from langchain_openai import ChatOpenAI # type: ignore
from langchain.agents import load_tools, initialize_agent

# 加载 .env 文件中的环境变量
load_dotenv()

# 从环境变量中获取 API Key 和 Base URL
api_key = os.getenv("DEEPSEEK_API_KEY")
base_url = os.getenv("DEEPSEEK_API_URL")

# 初始化 ChatOpenAI 客户端
llm = ChatOpenAI(
    openai_api_key=api_key,  # 必须明确设置 api_key
    model_name="deepseek-chat",  # 使用 deepseek-chat
    base_url=base_url,  # 设置 Base URL
)

tools = load_tools(["llm-math", "wikipedia"], llm=llm)

在上述代码中,我们加载了 llm-mathwikipedia 工具。llm-math 用于数学计算,wikipedia 则用于从 Wikipedia 获取信息。加载这些工具后,智能体可以通过它们来解答不同类型的问题。

2.2 初始化智能体

一旦工具加载完毕,我们就可以初始化智能体。通过 initialize_agent 函数,我们可以将加载的工具与语言模型(LLM)结合,从而使智能体能够动态调用外部工具来执行任务。

from langchain.agents import AgentType

# 初始化智能体,将工具和 LLM 传入
agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,  # 使用零样本反应描述代理
    handle_parsing_errors=True,  # 处理解析错误
    verbose=True  # 打印详细的执行过程
)

2.3 使用智能体执行任务

智能体初始化后,我们可以开始让它执行任务。例如,智能体可以解答数学问题,或者查询 Wikipedia 获取关于某个主题的信息。下面是一个简单的数学问题示例:

# 询问智能体 25% 的 300 等于多少
response = agent("What is the 25% of 300?")
print(response)

2.3.1 处理数学问题

通过 llm-math 工具,智能体将计算 25% 的 300,并返回结果。执行后的输出为:

Final Answer: 75.0

2.3.2 使用 Wikipedia 查找信息

智能体也能够使用 wikipedia 工具来查询知识库中的信息。例如,询问智能体有关 Tom M. Mitchell 的书籍,它会自动访问 Wikipedia 查找相关信息并返回答案:

question = "Tom M. Mitchell is an American computer scientist what book did he write?"
result = agent(question)
print(result)

返回的结果将是:

Final Answer: Machine Learning

2.4 观察执行过程

LangChain 提供了调试模式,可以查看智能体的执行过程,帮助开发者了解每个步骤的详细信息。通过调试模式,可以清晰地看到智能体在执行任务时如何选择工具、执行操作并得出结果。

import langchain
langchain.debug = True  # 开启调试模式

# 运行任务
response = agent("What is the 25% of 300?")
print(response)

langchain.debug = False  # 关闭调试模式

三、定义和使用自定义工具

除了 LangChain 提供的内建工具外,开发者还可以根据自己的需求定义并集成自定义工具。通过自定义工具,智能体可以执行更为专门化的任务,从而适应更加复杂的业务场景。本文将展示如何定义一个简单的工具,例如返回当前日期的工具,并将其集成到智能体中。

3.1 安装依赖并导入库

首先,我们需要确保所需的依赖已安装,并导入相关库。为了获取当前日期,我们将使用 Python 内置的 datetime 模块。接着,使用 LangChain 的 @tool 装饰器来定义自定义工具。

from langchain.agents import tool
from datetime import date

3.2 定义自定义工具

在 LangChain 中,自定义工具通过装饰器 @tool 定义,工具函数的输入和输出可以根据需求进行定制。下面我们定义一个简单的工具,返回今天的日期:

@tool
def time(text: str) -> str:
    """返回今天的日期,用于与日期相关的任务"""
    return str(date.today())

time 工具的功能非常简单:当调用时,它将返回当前日期。它的输入参数 text 在本例中并不会实际使用,但保留该参数是为了保持工具接口的统一性。

3.3 集成自定义工具到智能体中

在定义好自定义工具后,我们可以将其集成到智能体中。将自定义工具与其他内建工具一起加载,并初始化智能体,便于它动态执行任务。

from langchain.agents import initialize_agent
from langchain.chat_models import ChatOpenAI

# 初始化 ChatOpenAI 客户端
llm = ChatOpenAI(
    openai_api_key=api_key,  # 必须明确设置 api_key
    model_name="deepseek-chat",  # 使用 deepseek-chat
    base_url=base_url,  # 设置 Base URL
)

# 加载内建工具和自定义工具
tools = load_tools(["llm-math", "wikipedia"], llm=llm)
tools.append(time)  # 将自定义的 time 工具添加到工具列表中

# 初始化智能体
agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
    handle_parsing_errors=True,
    verbose=True
)

3.4 使用智能体执行任务

智能体现在已经具备了调用内建工具和自定义工具的能力。我们可以让智能体执行查询任务并使用自定义工具。例如,我们可以询问智能体今天的日期:

result = agent("What's the date today?")
print(result)

返回结果会是:

Final Answer: Today's date is February 4, 2025.

3.5 错误处理与调试

在实际应用中,智能体可能会遇到错误。为了确保应用的健壮性,我们可以加入错误处理机制。例如,如果某个工具无法正确访问或执行时,智能体会捕获异常并返回相应的错误信息。

try:
    result = agent("What's the date today?")
except Exception as e:
    print(f"Exception occurred: {e}")

四、总结

本篇文章深入探讨了 LangChain 框架中 Agents(代理) 模块的使用方法,详细介绍了如何加载内建工具、初始化智能体,以及如何自定义工具以扩展智能体的功能。以下是核心要点总结:

  1. LangChain Agents 介绍

    • Agents 允许 LLM 结合外部工具,实现更智能的自动化工作流。
    • 适用于动态查询、数据处理和多步骤推理等任务。
  2. 使用 LangChain 内建工具

    • 通过 load_tools() 轻松加载 wikipediallm-math 等工具,让智能体具备实时信息查询和数学计算能力。
    • initialize_agent() 结合 LLM 和工具,使智能体可以自动调用合适的工具执行任务。
  3. 执行智能体任务

    • 通过 LangChain Agents 解决数学计算、Wikipedia 查询等任务,展示了智能体如何动态选择合适的工具来完成不同类型的请求。
    • 开启 langchain.debug = True 调试模式,观察智能体执行任务的每个细节,方便优化和调试。
  4. 定义和集成自定义工具

    • 使用 @tool 装饰器创建自定义工具,例如获取当前日期的 time() 方法,并成功集成到智能体中。
    • 自定义工具的引入,使得智能体可以执行更多定制化任务,不局限于 LangChain 预置的工具集。
  5. 错误处理与优化

    • 通过 try-except 结构捕获可能的异常,提高智能体的稳定性。
    • 结合 verbose=True 参数观察智能体执行过程,帮助优化工具调用逻辑。

LangChain 的 Agents 让 LLM 具备了超越单纯文本对话的能力,使其可以动态选择和调用外部工具,执行更复杂的任务。通过内建工具和自定义工具的结合,开发者可以根据自己的业务需求构建智能化应用,如自动化数据分析、智能搜索、信息提取等。未来,随着 LangChain 生态的发展,可以期待更强大的工具集成能力,让 AI 代理真正成为生产力工具的核心组件。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴师兄大模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值