codeforces626E.Simple Skewness(三分)

Define the simple skewness of a collection of numbers to be the collection's mean minus its median. You are given a list of n (not necessarily distinct) integers. Find the non-empty subset (with repetition) with the maximum simple skewness.

The mean of a collection is the average of its elements. The median of a collection is its middle element when all of its elements are sorted, or the average of its two middle elements if it has even size.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of elements in the list.

The second line contains n integers xi (0 ≤ xi ≤ 1 000 000) — the ith element of the list.

Output

In the first line, print a single integer k — the size of the subset.

In the second line, print k integers — the elements of the subset in any order.

If there are multiple optimal subsets, print any.

Examples
input
4
1 2 3 12
output
3
1 2 12 
input
4
1 1 2 2
output
3
1 1 2 
input
2
1 2
output
2

1 2

题意:给你n个数,让你找到一个非空子集合,使得这个子集合的平均数和中位数的差最大。

思路:首先,这个产生最大值的子集合内含的数的个数一定是奇数(平均数不等于中位数),因为如果个数是偶数,那么我们可以减去中间较打的一个数,那么平均数减去中位数的值就会变大。我们可以枚举每一个数为中位数,然后三分找到最大的平均数。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 200050
ll a[maxn];
ll n,m;
ll sum[maxn];


int main()
{
    ll i,j;
    while(scanf("%lld",&n)!=EOF)
    {
        for(i=1;i<=n;i++){
            scanf("%I64d",&a[i]);
        }
        sort(a+1,a+1+n);
        sum[0]=0;
        for(i=1;i<=n;i++){
            sum[i]=sum[i-1]+a[i];
        }
        if(n==1 || n==2){
            printf("1\n");
            printf("%I64d\n",a[1]);continue;
        }
        ll l,r,d,m1,m2,t1,t2;
        ll mid=1,len=0,zong=0;
        ll zong1,mid1,len1;
        for(i=2;i<=n-1;i++){
            l=1;r=min(i-1,n-i);
            for(j=1;j<=100;j++){
                m1=(2*l+r)/3;
                m2=(l+2*r+2)/3; //向上取整
                /*
                d=(l+r)/2;
                m1=d;
                m2=(d+r)/2;
                */
                t1=sum[i]-sum[i-m1-1]+sum[n]-sum[n-m1];
                t2=sum[i]-sum[i-m2-1]+sum[n]-sum[n-m2];
                if(t1*(2*m2+1)<t2*(2*m1+1)){
                    l=m1+1;
                }
                else r=m2-1;
            }
            zong1=sum[i]-sum[i-l-1]+sum[n]-sum[n-l]-(2*l+1)*a[i];
            len1=l;
            mid1=i;
            if(zong1*(2*len+1)>zong*(2*len1+1) ){
                zong=zong1;
                len=len1;
                mid=mid1;
            }
        }
        printf("%I64d\n",len*2+1);
        int flag=1;
        for(i=mid-len;i<=mid;i++){
            if(flag){
                flag=0;printf("%I64d",a[i]);
            }
            else{
                printf(" %I64d",a[i]);
            }
        }
        for(i=n-len+1;i<=n;i++){
            printf(" %I64d",a[i]);
        }
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值