CodeForces 626E Simple Skewness(三分)

题意:给出一个数的集合,求平均数减去中位数最大的子集。

思路:首先可以证明的是这个集合里的元素个数一定为奇数。

假设这个差最大的子集中有偶数个元素,那么去掉中间较大的元素后对平均数减小的影响比对中位数的减小影响小,所以最后的解更优了,所以最后的集合的元素数量一定是奇数。

现在可以枚举中位数了,贪心的来想,先将元素排序,然后尽可能取符合条件的大的数放进集合,随着集合数量的增大答案先增大后减小,所以可以三分来求解。

#include<bits/stdc++.h>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
#define pb push_back
#define mp make_pair
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

const int MAXN = 200020;
//const int INF = 0x3f3f3f3f;
int n, a[MAXN];
LL sumv[MAXN];
LL cal_mean(int pos, int len) {
	return sumv[n]-sumv[n-len+1]+sumv[pos]-sumv[pos-len];
}
int main()
{
    //freopen("input.txt", "r", stdin);
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    	scanf("%d", &a[i]);
    sort(a+1, a+n+1);
    for (int i = 1; i <= n; i++)
    	sumv[i] = sumv[i-1] + a[i];
    double maxv = -1;
    pii ans;
    for (int i = 1; i <= n; i++) {
    	int l = 1, r = min(i, n-i+1);
    	while (l < r) {
    		int mid1 = (l+r)>>1;
			int mid2 = mid1 + 1;
			if (cal_mean(i, mid1)*(2*mid2-1) > cal_mean(i, mid2)*(2*mid1-1))
				r = mid2 - 1;
			else l = mid1 + 1; 
    	}
    	if (cal_mean(i, r) > (maxv+a[i])*(2*r-1)) {
    		ans.first = i;
    		ans.second = r;
    		maxv = (double)cal_mean(i, r)/(2*r-1) - a[i];
    	}
    }
    cout << 2*ans.second-1 << endl;
    for (int i = ans.first; i > ans.first-ans.second; i--)
    	cout << a[i] << " ";
    for (int i = n-ans.second+2; i <= n; i++)
    	cout << a[i] << " ";
    return 0;
}

















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值