题意:给出一个数的集合,求平均数减去中位数最大的子集。
思路:首先可以证明的是这个集合里的元素个数一定为奇数。
假设这个差最大的子集中有偶数个元素,那么去掉中间较大的元素后对平均数减小的影响比对中位数的减小影响小,所以最后的解更优了,所以最后的集合的元素数量一定是奇数。
现在可以枚举中位数了,贪心的来想,先将元素排序,然后尽可能取符合条件的大的数放进集合,随着集合数量的增大答案先增大后减小,所以可以三分来求解。
#include<bits/stdc++.h>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
#define pb push_back
#define mp make_pair
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int MAXN = 200020;
//const int INF = 0x3f3f3f3f;
int n, a[MAXN];
LL sumv[MAXN];
LL cal_mean(int pos, int len) {
return sumv[n]-sumv[n-len+1]+sumv[pos]-sumv[pos-len];
}
int main()
{
//freopen("input.txt", "r", stdin);
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
sort(a+1, a+n+1);
for (int i = 1; i <= n; i++)
sumv[i] = sumv[i-1] + a[i];
double maxv = -1;
pii ans;
for (int i = 1; i <= n; i++) {
int l = 1, r = min(i, n-i+1);
while (l < r) {
int mid1 = (l+r)>>1;
int mid2 = mid1 + 1;
if (cal_mean(i, mid1)*(2*mid2-1) > cal_mean(i, mid2)*(2*mid1-1))
r = mid2 - 1;
else l = mid1 + 1;
}
if (cal_mean(i, r) > (maxv+a[i])*(2*r-1)) {
ans.first = i;
ans.second = r;
maxv = (double)cal_mean(i, r)/(2*r-1) - a[i];
}
}
cout << 2*ans.second-1 << endl;
for (int i = ans.first; i > ans.first-ans.second; i--)
cout << a[i] << " ";
for (int i = n-ans.second+2; i <= n; i++)
cout << a[i] << " ";
return 0;
}