人脸识别是一项广泛应用于计算机视觉领域的技术,它可以用于识别和验证个人身份。其中,主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)是常用的人脸识别算法。本文将介绍基于PCA+LDA算法的人脸识别原理,并提供相应的Matlab代码实现。
-
数据集准备
在进行人脸识别前,我们需要准备一个包含多个人脸图像的数据集。这些图像应该包括每个人的多个不同姿态和表情的样本。在本示例中,我们使用ORL人脸数据库。该数据库包含40个人的400张灰度图像,每个人有10张图像。 -
数据预处理
首先,我们需要对图像进行预处理,以便在后续的特征提取过程中获得更好的效果。预处理步骤包括将图像转换为灰度图像、调整图像大小和对图像进行归一化处理。
% 数据预处理
function normalized_images = preprocess_images